K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)

14 tháng 9 2020

hỏi j khó vậy

14 tháng 9 2020

Sửa VP = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì a, b, c là độ dài ba cạnh của một tam giác

=> a, b, c > 0

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)( cái này bạn tự chứng minh nhé ) ta có :

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)

TT : \(\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{4}{a+c-b+b+c-a}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

Cộng theo vế ta có :

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow2\left(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)( đpcm )

Đẳng thức xảy ra ⇔ a = b = c

21 tháng 12 2016

\(m=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(\left(a+b\right)^2-c^2\right)\left(c^2-\left(a-b\right)^2\right)\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)

Vì a, b, c là 3 cạnh của tam giác nên tổng của 2 cạnh luôn lớn hơn 1 cạnh và 3 cạnh đều dương

Nên \(\Rightarrow m>0\)

21 tháng 12 2016

M=4a2b2-(a2+b2-c2)2

=(2ab)2-(a2+b2-c2)2

=(2ab-a2-b2+c2)(2ab+a2+b2-c2)

=(c2-a2+2ab-b2)(a2+2ab+b2-c2)

=[c2-(a2-2ab+b2)][(a2+2ab+b2)-c2]

=[c2-(a-b)2][(a+b)2-c2]

=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

0