Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)
\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)
Tương tự và cộng lại:
\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)
\(\sqrt{\dfrac{a}{b+c-ta}}=\dfrac{a\sqrt{t+1}}{\sqrt{\left(at+a\right)\left(b+c-ta\right)}}\ge\dfrac{2a\sqrt{t+1}}{at+a+b+c-ta}=\dfrac{2a\sqrt{t+1}}{a+b+c}\)
Làm tương tự, cộng lại và rút gọn
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé
Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có:
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)
Tương tự và cộng lại ta được BĐT bên trái
Dấu "=" xảy ra khi \(a=b=c\)
Bên phải:
Áp dụng BĐT Bunhiacopxki:
\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)
Mặt khác do a;b;c là 3 cạnh của 1 tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)
\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2.\left(a+b\right)=\frac{1}{4}\left(a+b\right)^3\)
\(\Rightarrow\frac{c}{\sqrt[3]{a^3+b^3}}\le\sqrt[3]{4}.\frac{c}{a+b}\)
Tương tự rồi cộng theo vế 3 BĐT trên ta có đpcm
Áp dụng BĐT Bu- nhi - a:
\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(p-a+p-b+p-c\right)}\)
\(=\sqrt{3\left(3p-2p\right)}=\sqrt{3p}\)(Vì p là nửa chu vi nên \(a+b+c=2p\))
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình