Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoặc
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
a2
Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:
đây là phép cộng không phải phép nhân
Cho a,b,c,d là các số tự nhiên khác 0 thỏa mãn a 2 + b2 = c2 +d2. Chứng minh rằng a+b+c+d là hợp số.
a2 + b2 = c2 + d2
\(\Rightarrow\)a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) \(⋮\)2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) \(⋮\)2
\(\Rightarrow\)a + b + c + d \(⋮\)2 nên cũng là hợp số
\(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)⋮2\)
Mà \(a^2+b^2+c^2+d^2-a-b-c-d⋮2\)
Nên a + b + c + d chia hết cho 2
Ta có:
\(\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k\)
\(\frac{c}{d}=\frac{11}{13}=\frac{11m}{13m}=>c=11m,d=13m=>M=c+d=11m+13m=24m\)
\(\frac{e}{f}=\frac{13}{17}=\frac{13n}{17n}=>e=13n,f=17n=>M=e+f=13n+17n=30n\)
=>M=36k=24m=30n
=>M chia hết cho 36,24,30
Ta thấy: ƯCLN(36,24,30)=360
=>M chia hết cho 360
=>M=360h
mà M là số bé nhất có 4 chữ số=>h bé nhất
=>999<360h
=>2<h
mà h bé nhất
=>h=3
=>M=3.360=1080
Vậy M=1080
$\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k$
a+b = c+d => a = c+d-b
Thay vào ab+1 = cd
=> (c+d-b).b+1 = cd
<=> cb+db-cd+1-b2 = 0
<=> b(c-b)-d(c-b)+1 = 0
<=> (b-d)(c-b) = -1
a,b,c,d,nguyên nên b-d và c-b nguyên
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp:
TH1: b-d = -1 và c-b = 1
<=> d = b+1 và c = b+1
=> c = d
TH2: b-d = 1 và c-b = -1
<=> d = b-1 và c = b-1
=> c = d
Vậy c = d.