K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2020

Áp dụng \(\frac{x}{y}>\frac{x}{y+m}\)   ( x,y,m là số tự nhiên lớn hơn 0)

Ta có \(\frac{a}{a+b}>\frac{a}{a+b+c}\forall a,b,c dương\)

\(\frac{b}{b+c}>\frac{b}{b+c+a}\forall a,b,c dương\)

\(\frac{c}{c+a}>\frac{c}{c+a+b}\forall a,b,c dương\)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\)

=> \(A>\frac{a+b+c}{a+b+c}=1\)

Vậy A>1

11 tháng 1 2020

Cảm ơn bạn Trang Nguyễn nhiều lắm! Bạn có thể giải thích giúp mình là vì sao dòng thứ 3 đếm từ dưới lên trên rồi đến dòng thứ 2 từ dưới lên trên lại là \(\frac{a+b+c}{a+b+c}\)=1 không?