K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

5-6..thui..=>ko..hiểu

4 tháng 9 2017

Mình ko biết chắc đúng hết không,có gì mong bạn góp ý cho mình nha:

Ta có \(a+b+c=3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow1\ge\sqrt[3]{abc}\)

\(\Leftrightarrow1\ge abc\)

Ta có:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{\left(abc\right)^2}}=3\sqrt[3]{abc}=3\left(1\right)\)

Ta lại có \(\sqrt{abc}\ge\sqrt{1}=1\left(2\right)\)

Cộng \(\left(1\right)vs\left(2\right)\)lại ta có \(đpcm\)

Dấu \("="\)xảy ra khi \(a=b=c=1\)

20 tháng 9 2019

Èo, căng thế:

BĐT \(\Leftrightarrow\Sigma\sqrt{\left(a+b\right)\left(a+c\right)}\ge\Sigma a+\Sigma\sqrt{ab}\)(chú ý cái giả thiết a + b  + c = 1)

Thật vậy áp dụng BĐT Bunyakovski: \(\sqrt{\left(a+b\right)\left(a+c\right)}=\sqrt{\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{c}\right)^2\right]}\)

\(\ge\sqrt{\left(\sqrt{a^2}+\sqrt{bc}\right)^2}=a+\sqrt{bc}\). Tương tự hai BĐT còn lại và cộng theo vế có ngay đpcm.

Đẳng thức xảy ra khi a = b = c = 1/3

19 tháng 6 2021

\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)

\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)

Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\)\(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)

Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

19 tháng 6 2021

bạn có thể lm rõ hơn ở chỗ tớ khoanh ko ạ ?

undefined

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành

Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

CMR: $xyz=1$

-----------------------------

Có:

$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$

\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)

\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$

$\Rightarrow 1=\frac{1}{x^2y^2z^2}$

$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)

Ta có đpcm.

 

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

22 tháng 3 2020

1, Ta có \(abc=a+b+c+2\ge4\sqrt[4]{abc.2}\)

<=>\(abc\ge8\)

BĐT <=> \(ab+bc+ac\ge2\left(abc-2\right)\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2-\frac{2}{abc}\)

Áp dụng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)

Khi đó cần CM \(\frac{3}{\sqrt[3]{abc}}\ge2-\frac{2}{abc}\)

Đặt \(\frac{1}{\sqrt[3]{abc}}=x\)=> \(0< x\le2\)

BĐT<=> \(\frac{3}{x}\ge2-\frac{2}{x^3}\)

<=>\(\frac{2}{x^3}+\frac{3}{x}-2\ge0\)

<=> \(2+3x^2-2x^3\ge0\)

<=> \(\left(2-x\right)\left(2x^2+x+1\right)\ge0\)(luôn đúng với \(0< x\le2\))

=> BĐT được CM

Dấu bằng xảy ra khi a=b=c=2

22 tháng 3 2020

2. BĐT <=> \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\le\frac{3}{2}\)

Đặt \(a=\frac{y+z}{x};b=\frac{x+z}{y}\left(x.y,z>0\right)\)

=> \(c=\frac{a+b+2}{ab-1}=\frac{\frac{y+z}{x}+\frac{x+z}{y}+2}{\frac{\left(y+z\right)\left(x+z\right)}{xy}-1}=\frac{x^2+y^2+z\left(x+y\right)+2xy}{z\left(x+y+z\right)}=\frac{\left(x+y\right)^2+z\left(x+y\right)}{z\left(x+y+z\right)}=\frac{x+y}{z}\)

Khi đó BĐT <=> \(\frac{1}{\sqrt{\frac{\left(y+z\right)\left(x+z\right)}{xy}}}+\frac{1}{\sqrt{\frac{\left(x+z\right)\left(x+y\right)}{yz}}}+\frac{1}{\sqrt{\frac{\left(x+y\right)\left(y+z\right)}{zx}}}\le\frac{3}{2}\)

<=> \(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(y+z\right)\left(x+y\right)}}\le\frac{3}{2}\)

Áp dụng cosi ta có 

\(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)

Tương tự=> \(VT\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{y}{x+y}\right)=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z\)=> \(a=b=c=2\)

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

26 tháng 12 2015

\(VT=\sum\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}=\sum\frac{ab}{\sqrt{\left(b+c\right)\left(c+a\right)}}\le\sum\frac{ab}{2}\left(\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=\frac{1}{2}\left[\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}+\frac{bc+ca}{a+b}\right]=\frac{1}{2}\left(a+b+c\right)=1\)