Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
Ta có: \(\left(a^{19}.b^5\right).\left(b^{19}.c^5\right).\left(c^{19}.a^5\right)=a^{24}.b^{24}.c^{24}>0\) với mọi a;b;c khác 0
\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 biểu thức phải có giá trị dương
\(\Rightarrow\) Ba biểu thức đã cho không thể có cùng giá trị nguyên âm
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
a) (a-b+c)-(d+c-b)
= a - b + c - d - c + b
= a - d
b) -35 chia hết cho n-8
=> n - 8 thuộc Ư(-35)
=> n - 8 thuộc {-1; 1; -5; 5; -7; 7; - 35; 35}
=> n thuộc {7; 9; 3; 13; 1; 15; -27; 43}
c) a và b là 2 số nguyên khác nhau
=> a - b và b - a khác 0
a - b và b - a là 2 số đối nhau
=> (a - b)(b - a) là số nguyên âm
\(a,\left(a-b+c\right)-\left(d+c-b\right)\)
\(< =>a-b+c-d-c+b\)
\(< =>a-d\)
\(b,-35⋮n-8\)
\(=>n-8\inƯ\left(-35\right)\)
Nên ta có bảng sau :
n-8 | 1 | -1 | -5 | 55 | -7 | 7 | -35 | 35 |
n | 7 | 9 | 3 | 13 | 1 | 15 | -27 | 43 |
Vậy ...
\(c,\)a và b là 2 số nguyên khác nhau
=>a-b khác b-a
=>a-b và b-a là 2 số đối nhau
=>(a-b).(b-a) là số nguyên âm