Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}a+b+c=20\\16a+2b+c=80\end{cases}}\)
=> \(\left(16a+2b+c\right)-\left(a+b+c\right)=80-20=60\)
=> \(15a+b=60\)
=> b = 60 - 15 a
Mà a; b; c là số nguyên dương => a \(\in\){ 1; 2; 3; }
Khi đó: \(a+b+c=a+60-15a+c=20\)
=> \(c=14a-40\)
+) Với a = 1 => c = -26 ( loại )
+) Với a = 2 => c = -12 loại
+) Với a = 3 => c = 2 ( nhận ) khi đó b = 15
Vậy : M = 25.3 - 4.15 -2007.2= -3999.
\(\left\{{}\begin{matrix}a+b+c=20\\16a+2b+c=80\end{matrix}\right.\)\(\) \(\left\{{}\begin{matrix}a+b+c=20\\16a+b=60\end{matrix}\right.\)
\(\left\{{}\begin{matrix}b=60-15a\\c=14a-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}60-15a>0\Rightarrow a< 4\\14a-40>0\Rightarrow a\ge3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=15\\c=2\end{matrix}\right.\)
Thay vào => M
"mình nghi ngờ biểu thức M của bạn sai"
\(f\left(1\right)=a\cdot1^2+b\cdot1+c=a+c+b=2^{2006}+2^{2006}=2\cdot2^{2006}=2^{2007}\\ f\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a+c-b=2^{2006}-2^{2006}=0\\ A=f\left(-1\right)+f\left(1\right)=0+2^{2007}=2^{2007}\\ B=f\left(1\right)-f\left(-1\right)=2^{2007}-0=2^{2007}\)
Câu b xem lại đề
2) Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{matrix}\right.\)
\(\Rightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=12+18+30\)
\(\Rightarrow\left(a+b+c\right)\left(a+b+c\right)=60\)
\(\Rightarrow\left(a+b+c\right)^2=60\)
\(\Rightarrow a+b+c=\pm\sqrt{60}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\sqrt{60}:12=\dfrac{\sqrt{15}}{6}\\b=\sqrt{60}:18=\dfrac{\sqrt{15}}{9}\\c=\sqrt{60}:30=\dfrac{\sqrt{15}}{15}\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\sqrt{60}:12=\dfrac{-\sqrt{15}}{6}\\b=-\sqrt{60}:18=\dfrac{-\sqrt{15}}{9}\\c=-\sqrt{60}:30=\dfrac{-\sqrt{15}}{15}\end{matrix}\right.\end{matrix}\right.\)
Các câu sau làm tương tự
b. \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ac=\dfrac{3}{4}\)
\(\Rightarrow ab\cdot bc\cdot ac=\dfrac{9}{25}\Rightarrow\left(abc\right)^2=\dfrac{9}{25}\Rightarrow abc=\pm\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\dfrac{3}{5}:bc=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:ac=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:ab=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\dfrac{3}{5}:\dfrac{4}{5}=-\dfrac{3}{4}\\b=-\dfrac{3}{5}:\dfrac{3}{4}=-\dfrac{4}{5}\\c=-\dfrac{3}{5}:\dfrac{3}{5}=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy......................