K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) => \(\frac{a+b}{c}-1=\frac{a+c}{b}-1=\frac{b+c}{a}-1\)

=> \(\frac{a+b}{c}=\frac{a+c}{b}=\frac{b+c}{a}=\frac{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)}{c+b+a}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

M = \(\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}\) = 2.2.2 = 8

28 tháng 3 2019

TH1: Nếu a+b+c \(\ne0\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)

Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)

TH2 : Nếu a+b+c = 0

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

        \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)

vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

TH1: a+b+c=0 

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)

TH2: a+b+c khác 0

 \(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)

18 tháng 3 2017

\(\frac{2a-b}{a+b}=\frac{2}{3}\)

\(\Leftrightarrow6a-3b=2a+2b\)

\(\Leftrightarrow6a-2a=2b+3b\)

\(\Leftrightarrow4a=5b\)

\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)

\(\Leftrightarrow4a-2b=3b-3c+3a\)

\(\Leftrightarrow4a-3a=3b-3c+2b\)

\(\Leftrightarrow a=5b-3c\)

\(\Leftrightarrow a=4a-3c\)

\(\Leftrightarrow3a=3c\)

\(\Rightarrow a=c\)

\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)

18 tháng 3 2017

khó quá chịu

12 tháng 6 2016

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)

21 tháng 10 2017

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy các tỉ số đó bằng 1/2

20 tháng 10 2017

Đặt \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=k\)

\(\Rightarrow a=kb+kc\)và \(b=kc+ka\)và \(c=ka+kb\)

\(\Rightarrow a+b+c=kb+kc+kc+ka+ka+kb\)

\(a+b+c=k\left(b+c+c+a+a+b\right)\)

\(a+b+c=k\left[2\left(a+b+c\right)\right]\)

\(\frac{a+b+c}{2\left(a+b+c\right)}=k\)

\(\Rightarrow k=\frac{1}{2}\)

Mà \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=k\)

Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)

31 tháng 8 2020

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\)  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)

\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

=> đpcm

15 tháng 11 2023

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)

⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+���  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��

=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)

=> đpcm