Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng BĐT AM-Gm ta có:
\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)
ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm
\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)
\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)
Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)
\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)
Đúng hay ta có ĐPCM xyar ra khi a=b=c=1
a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0
\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
M tương tự
Ta có a2 + b2 + c2 = (a + b + c)2
<=> ab + bc + ca = 0
<=> \(\hept{\begin{cases}ab=-bc-ca\\bc=-ac-ab\\ca=-ab-bc\end{cases}}\)
Khi đó a2 + 2bc = a2 + bc + bc = a2 + bc - ac - ab = (a - b)(a - c)
Tương tư b2 + 2ac = (b - a)(b - c)
c2 + ab = (c - a)(c - b)
Khi đó \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-b^2\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-a^2b+a^2c-b^2c+b^2a-c^2a+c^2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)(đpcm)
Mk nghĩ đề sai nhé
Lời giải
Vì \(a;b;c\) là các cạnh của tam giác nên \(a;b;c>0\)
Ta luôn có: \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\)
Cộng theo 3 vế ta có: \(a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow\Delta ABC\) đều
cái này thì mk làm đc rồi mk cũng nghĩ giống bạn đề sai