K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016
  • Ta có :

 \(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\) \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)

  • Theo bất đẳng thức tam giác : 

\(\hept{\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\a\left(b+c\right)>a^2\\b\left(a+c\right)>b^2\end{cases}}\) \(\Rightarrow\hept{\begin{cases}c^2< bc+ac\\a^2< ab+ac\\b^2< ab+bc\end{cases}}\) \(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

23 tháng 5 2016

Ta có : \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ac\right)\le2\left(a^2+b^2+c^2\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Vì BĐT cuối luôn đúng nên ta có : \(a^2+b^2+c^2\ge ab+bc+ac\)

Theo Bất đẳng thức tam giác ta có : 

\(a< b+c\Rightarrow a.a< a\left(b+c\right)\Leftrightarrow a^2< ab+ac\) (1)

\(b< a+c\Rightarrow b.b< b\left(a+c\right)\Leftrightarrow b^2< ab+bc\)(2)

\(c< a+b\Rightarrow c.c< c\left(a+b\right)\Leftrightarrow c^2< ac+bc\)(3)

Cộng (1) , (2) , (3) theo vế ta được : \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

Từ đó suy ra đpcm

23 tháng 5 2016

Nếu em lên lớp 7 thì em sẽ giúp

19 tháng 11 2023

loading...

18 tháng 4 2022

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

18 tháng 4 2022

đúng trẻ trâu

19 tháng 5 2018

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

25 tháng 5 2018

Đúng rầu đấy