K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2019

\(\frac{\sqrt{ab}-1}{3}=\frac{\sqrt{bc}-3}{9}=\frac{\sqrt{ac}-5}{-6}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}-9}{6}=\frac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{\sqrt{ab}-1}{3}=\frac{1}{3}\\\frac{\sqrt{bc}-3}{9}=\frac{1}{3}\\\frac{\sqrt{ac}-5}{-6}=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{ab}=2\\\sqrt{bc}=6\\\sqrt{ac}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=4\\bc=36\\ac=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=9a\\ac=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=9\end{matrix}\right.\)

2 tháng 3 2019

=3(a-b)(b-c)(c-a) nha bn

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))

9 tháng 12 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)

\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)

\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)

Từ (1) và (2) được a = b = c

Khi đó:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

13 tháng 12 2019

Tham khảo: Câu hỏi của Đậu Đình Kiên

10 tháng 6 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{a}{a+b}\cdot b=\frac{c}{b+c}\cdot b\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{b+c}\Rightarrow a\left(b+c\right)=c\left(a+b\right)\Rightarrow ab+ac=ac+bc\Rightarrow ab=bc\Rightarrow a=c\left(1\right)\)

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{b}{a+b}\cdot a=\frac{c}{a+c}\cdot a\)

\(\Rightarrow\frac{b}{a+b}=\frac{c}{a+c}\Rightarrow b\left(a+c\right)=c\left(a+b\right)\Rightarrow ab+bc=ac+bc\Rightarrow ab=ac\Rightarrow b=c\left(2\right)\)

\(\frac{bc}{b+c}=\frac{ac}{a+c}=\frac{b}{b+c}\cdot c=\frac{a}{a+c}\cdot c\)

\(\Rightarrow\frac{b}{b+c}=\frac{a}{a+c}\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Rightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow a=b\left(3\right)\)

từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

\(\iff\) \(ac+bc=ab+ac=bc+ba\)

+)\(ac+bc=ab+ac\) 

\(\implies\)\(bc=ab\)

\(\implies\) \(c=a\left(1\right)\)

+)\(ab+ac=bc+ba\)

\(\implies\) \(ac=bc\)

\(\implies\) \(a=b\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\implies\) \(a=b=c\)

\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Vậy \(M=1\)