Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$
Áp dụng BĐT AM-GM:
$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$
$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$
$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$
$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$
$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$
Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:
$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$
$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$
Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$
Lời giải:
Ta có:
$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$
Áp dụng BĐT AM-GM:
$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$
$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$
$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$
$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$
$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$
Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:
$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$
$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$
Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$
\(a+b+c=0\) nên trong 3 số a;b;c phải có ít nhất 1 số dương
Do vai trò của 3 biến như nhau, ko mất tính tổng quát, giả sử \(c>0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc=-6\)
\(\Rightarrow F=\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{-6}=\dfrac{3\left(ab+bc+ca\right)}{-6}=\dfrac{ab+bc+ca}{-2}\)
\(=\dfrac{-\dfrac{2}{c}+c\left(a+b\right)}{-2}=\dfrac{-\dfrac{2}{c}+c\left(-c\right)}{-2}=\dfrac{c^2}{2}+\dfrac{1}{c}=\dfrac{c^2}{2}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2}{8c^2}}=\dfrac{3}{2}\)
\(F_{min}=\dfrac{3}{2}\) khi \(\left(a;b;c\right)=\left(-2;1;1\right)\) và các hoán vị
A- Tìm MAX (a^2 + b^2 + c^2)
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN
B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề)
a) Cách 1 : Theo BĐT Cauchy, ta có
...a^2 + b^2 >= 2ab
...b^2 + c^2 >= 2bc
...c^2 + a^2 >= 2ac
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 )
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
b) Cách 2 : Áp dụng BĐT Bunhiacopski, ta có
...(a^2 + b^2 + c^2)(b^2 + c^2 + a^2) >= (ab + bc + ca)^2
...---> a^2 + b^2 + c^2 >= ab + bc + ca = 1 (dấu bằng xảy ra khi a/b = b/c = c/a <=> a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 )
...---> MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
A- Tìm MAX (a^2 + b^2 + c^2)
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN
B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề)
a) Cách 1 : Theo BĐT Cauchy, ta có
...a^2 + b^2 >= 2ab
...b^2 + c^2 >= 2bc
...c^2 + a^2 >= 2ac
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 )
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
đăng bài khó z lm cả 10 phút
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(ab+bc+ca\le2\)
\(\Leftrightarrow\)\(2ab+2bc+2ca\le4\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca\le6\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2\le6\)
\(\Leftrightarrow\)\(-\sqrt{6}\le a+b+c\le\sqrt{6}\)
hếy bít làm :vvv