K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Làm lại:

\(VT\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2abc}=\frac{a+b+c}{2abc}\)

Đẳng thức xảy ra khi a =b = c .

Ngắn gọn súc tích không biết có lỗi gì không đây:)

29 tháng 9 2019

BĐT là đối xứng giúp em nghĩ đến cách đặt \(p=a+b+c;q=ab+bc+ca;r=abc\)

BĐT \(\Leftrightarrow2r\left(\frac{\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\right)\le p\)

\(\Leftrightarrow2r\left[\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)\right]\le p\left[abc\left(a^3+b^3+c^3\right)+a^3b^3+b^3c^3+c^3a^3+2\left(abc\right)^2\right]\)\(\Leftrightarrow2r\left[p^2q-q^2-2pr\right]\le p\left[r\left(p^3-3pq+3r\right)+q^3-3pqr+5r^2\right]\)

\(\Leftrightarrow p^4r-8p^2qr+pq^3+12pr^2+2q^2r\ge0\)

\(\Leftrightarrow12pr^2+\left(p^4+2q^2-8p^2q\right)r+pq^3\ge0\)

Chú ý 2p > 0 , theo định lí về dấu tam thức bậc 2, ta cần chứng minh \(\Delta\le0\)

\(\Leftrightarrow\left(p^4+2q^2-8p^2q\right)^2-48p^2q^3\le0\)

Em chịu rồi:( ko bt có sai chỗ nào ko nữa:( Mong tìm được cách giải tự nhiên hơn.

19 tháng 4 2020

\(VT=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(c+a\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)

\(=\sqrt{\frac{a}{a+b}.\frac{a}{c+a}}+\sqrt{\frac{b}{a+b}.\frac{b}{b+c}}+\sqrt{\frac{c}{b+c}.\frac{c}{c+a}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NM
8 tháng 5 2021

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

9 tháng 9 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
21 tháng 11 2019

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=2\)

\(\Leftrightarrow\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}=1\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\le1\)

\(\Leftrightarrow\left(a+b+c\right)^2\le a^2+b^2+c^2+3\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\le3\)

\(\Leftrightarrow ab+bc+ca\le\frac{3}{2}\)

22 tháng 11 2019

2 dòng đầu là như thế nào vậy? Mình chưa hiểu lắm