Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b>c;b+c>a;c+a>b\\a+b;b+c;c+a< a+b+c\end{cases}}\)
Ta có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+c+a+c}=\frac{2}{2\left(a+c\right)}=\frac{1}{a+c}\)
Chứng minh tương tự , ta được: \(\frac{1}{b+c}+\frac{1}{c+a}>\frac{1}{a+b}\)
\(\frac{1}{c+a}+\frac{1}{a+b}>\frac{1}{b+c}\)
\(\Rightarrowđpcm\)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:
\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\) (1)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:
\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\) (2)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:
\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\) (3)
Từ (1), (2) và (3)
\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))
Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều
Cho a,b,c là độ dài ba cạnh của tam giác thỏa mãn (1+b/a)(1+c/b)(1+a/c)=8.Chứng minh tam giác đó đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b
(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c
(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a
=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)
=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8
Dấu = xảy ra <=> a = b = c <=> Tam giác đều
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
CM bất đảng thức :
\(a+b\ge2\sqrt{ab}\)
XH : a + b - 2\(\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Áp dụng BĐT : ...
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)
Ta có
\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)
\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)
\(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)
\(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)
Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)
Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)
Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)
\(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)
\(\Rightarrow a=b=c\)
Vậy a, b, c là độ dài ba cạnh của một tam giác đều
Ta có a + b > c ; b + c > a ; a + c > b
\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
Vậy ...