Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b,c\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^2\le c\\0\le abc\le1\end{matrix}\right.\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge0\)
\(\Rightarrow a+b+c-ab+bc+ca+abc\le1\)
\(\Rightarrow a+b^2+c^2-ab-bc-ca\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\) trong 3 số a,b,c có 1 số bằng 1 , 2 số còn lại bằng 0
Vì \(a,b,c\le1\) nên ta có:
\(\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà ta có: \(\hept{\begin{cases}b^2\le b\\c^3\le c\\1-abc\le1\end{cases}}\)
Từ đó suy ra:
\(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1-abc\le1\)
Ta có ĐPCM
\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)
\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)
Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)
=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)
\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)
\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)
\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)
CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......
(Dấu = xảy ra (=) a=b=c=1/3
vì a,b,c thuộc [0;1] =>0 </ a,b,c </ 1 => b(b-1) </ 0 ;c(c^2-1) </ 0=> b^2 </ b , c^3 </ c
=>a+b^2+c^3-ab-bc-ca </ a+b+c-ab-bc-ac = a+b+c-(ab+bc+ac)
cũng có a,b,c thuộc [0;1] => (1-a)(1-b)(1-c)=(1-b-a+ab)(1-c)=1-c-b+bc-a+ac+ab-abc >/ 0
=>ab+bc+ac-(a+b+c) +1 >/ abc >/ 0 (do a,b,c >/ 0 ) => a+b+c-(ab+bc+ca)-1 </ 0 => a+b+c-(ab+bc+ac) </ 1
->đpcm