Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CH song song MP và H thuộc AB
ta có
\(\hept{\begin{cases}\frac{NB}{NC}=\frac{MB}{MH}\\\frac{PC}{PA}=\frac{MH}{MA}\end{cases}\Rightarrow\frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PA}=}\frac{MA}{MB}.\frac{MB}{MH}.\frac{MH}{MA}=1\)vậy ta có dpcm
Từ A kẻ AM // BC (M ∈ RP )
Xét △QPC có AM // PC
\(\Rightarrow\frac{QC}{QA}=\frac{PC}{AM}\)(Hệ quả định lí Ta-lét) (1)
Xét △RBP có AM // BP
\(\Rightarrow\frac{RA}{RB}=\frac{AM}{BP}\)(Hệ quả định lí Ta-lét) (2)
Từ (1) và (2) suy ra :
\(\frac{BP}{PC}\cdot\frac{CQ}{QA}\cdot\frac{AR}{RB}=\frac{BP}{PC}\cdot\frac{PC}{AM}\cdot\frac{AM}{BP}=1\)(ĐPCM)
Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.
Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\)
Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)
Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)