K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 2 2021

A B C M P N H

Kẻ CH song song MP và H thuộc AB 

ta có 

\(\hept{\begin{cases}\frac{NB}{NC}=\frac{MB}{MH}\\\frac{PC}{PA}=\frac{MH}{MA}\end{cases}\Rightarrow\frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PA}=}\frac{MA}{MB}.\frac{MB}{MH}.\frac{MH}{MA}=1\)vậy ta có dpcm

14 tháng 2 2020

ARMQCPB

Từ A kẻ AM // BC (M ∈ RP )

Xét △QPC có AM // PC

\(\Rightarrow\frac{QC}{QA}=\frac{PC}{AM}\)(Hệ quả định lí Ta-lét)     (1)

Xét △RBP có AM // BP

\(\Rightarrow\frac{RA}{RB}=\frac{AM}{BP}\)(Hệ quả định lí Ta-lét)     (2)

Từ (1) và (2) suy ra :

\(\frac{BP}{PC}\cdot\frac{CQ}{QA}\cdot\frac{AR}{RB}=\frac{BP}{PC}\cdot\frac{PC}{AM}\cdot\frac{AM}{BP}=1\)(ĐPCM)

5 tháng 7 2016

A B C M A1 B1 C1 H K

Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.

Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\) 

Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)

Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)

 

15 tháng 2 2017

Chi can ap dung ding li Talet la duoc ( de ma ban)

15 tháng 2 2017

mk muốn xem cách trình bày của bạn bạn có thể giải rồi gửi lên cho mk k ? xin bạn đó!