Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)
Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
Và lượng trên tử bé hơn bằng \(ab+bc+ca\)
\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)
\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có:
\(\frac{a}{\sqrt{1+a^2}}=\frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó Cauchy....
Bài này quá nhiều người đăng đến ngán r`, bn quay lại tìm hoặc làm nốt nhéiiiiiiiiiiiiiiiii
Do \(a+b+c=1\) nên :
\(VT=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\frac{ca}{b\left(a+b+c\right)+ac}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)
Áp dụng BĐT AM - GM :
\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế :
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
\(a^2+b^2+c^2\le abc\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\le1\)
Đặt vế trái biểu thức là P
\(P=\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{a}{2\sqrt{a^2bc}}+\frac{b}{2\sqrt{b^2ac}}+\frac{c}{2\sqrt{c^2ab}}\)
\(P\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(P\le\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\le\frac{1}{2}\left(\frac{a^2+b^2+c^2}{abc}\right)\le\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
\(a^2+bc\ge2a\sqrt{bc}\Leftrightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}=\frac{\sqrt{bc}}{2abc}\)
Tương tự ta cũng có: \(\frac{1}{b^2+ac}\le\frac{\sqrt{ac}}{2abc},\frac{1}{c^2+ab}\le\frac{\sqrt{ab}}{2abc}\).
Cộng lại vế theo vế ta được:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
Ta lại có:
\(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}=\frac{1}{2}\left[\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right]\)
\(\ge0\)nên \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\).
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\).
Dấu \(=\)khi \(a=b=c>0\).