Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tính tổng quát giả sử $a\leqslant b\leqslant c$
đặt
x=a+b+c
y=ab+bc+ac
z=abc
ta có bđt thức đầu tiên sẽ tương đương với
$(x+3a)(x+3b)(x+3c)> 25(x-a)(x-b)(x-c)$
$\Leftrightarrow x^{3}+3x^{2}(a+b+c)+9x(ab+bc+ac)+27abc> 25(x^{3}-x^{2}(a+b+c)+x(ab+bc+ac)-abc)$
$\Leftrightarrow x^{3}-4xy+13z> 0$ (1)
đặt S=VT
ta có
S=$(a+b+c)^{3}-4(a+b+c)(ab+bc+ac)+13abc=(a+b+c)((a+b+c)^{2}-4(ab+bc+ac))+13abc=(a+b+c)((a+b-c)^{2}-4ab)+13abc= (a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)$
vậy (1) tương đương với
$(a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)> 0$
do $0< a\leqslant b\leqslant c$
nên bđt trên hiển nhiên đúng
vậy được đpcm
bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi hoặc bdt holder ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\) câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .
Bài 1:Đặt VT=A
Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)
Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự với 2 cái còn lại
\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)
\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)
Đẳng thức xảy ra khi a=b=c
Bài 2:
Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
Dự đoán điểm rơi xảy ra khi a=b=c=1
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
Tương tự suy ra
\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh
Lời giải:
Để ý rằng:
\(\frac{4a^2+(b-c)^2}{2a^2+b^2+c^2}=\frac{2(2a^2+b^2+c^2)-2(b^2+c^2)+(b-c)^2}{2a^2+b^2+c^2}=2-\frac{(b+c)^2}{2a^2+b^2+c^2}\)
Biến đổi tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}=6-\underbrace{\left[\frac{(b+c)^2}{2a^2+b^2+c^2}+\frac{(c+a)^2}{2b^2+a^2+c^2}+\frac{(a+b)^2}{2c^2+a^2+b^2}\right]}_{N}\)
Ta muốn CM \(\text{VT}\geq 3\Leftrightarrow N\leq 3\) . Thật vậy:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{(b+c)^2}{2a^2+b^2+c^2}\leq \frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\). Tương tự như vậy:
\(\left\{\begin{matrix} \frac{(a+c)^2}{2b^2+a^2+c^2}\leq \frac{a^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}\\ \frac{(a+b)^2}{2c^2+a^2+b^2}\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\end{matrix}\right.\)
Cộng theo vế thu được \(N\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3\)
CM hoàn tất. Dấu bằng xảy ra khi \(a=b=c>0\)
#Akai...: Cho em hỏi, đoạn đầu chị ghi "để ý rằng" khi trình bày ra thì mik ghi như thế nào ạ. Không lẽ lại ghi "để ý rằng"
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
Theo bài ra, ta có:
x+y+z=3
\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cau-chy ngược dấu ta có:
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu '=' xảy ra <=> a=3;b=2;c=1
*Bài khá giống bạn kia :)
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
\(\Rightarrow x+y+z=3\)
BĐT cần chứng minh trở thành :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cô Si ngược dấu ta có :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\)
k mk nha
k mk nha!
#meo#
$A=\frac{64abc}{(a+b)(b+c)(c+a)}+1+\frac{16ab}{(b+c)(c+a)}+\frac{16bc}{(b+a)(c+a)}+\frac{16ac}{(a+b)(a+c)}+4.(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c})=4.(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c})+\frac{64abc}{(a+b)(b+c)(c+a)}+\frac{16ab(a+b)+16bc(b+c)+16ac(a+c)}{(a+b)(b+c)(c+a)}+1=4(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})+\frac{64abc}{(a+b)(b+c)(c+a)}+\frac{16(a+b)(b+c)(c+a)-32abc}{(a+b)(b+c)(c+a)}+1=4(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})+\frac{32abc}{(a+b)(b+c)(c+a)}+17=4\left [\frac{a}{b+c} +\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{(a+b)(b+c)(c+a)} \right ]+\frac{16abc}{(a+b)(b+c)(c+a)}+17\geq 4.2+17+\frac{16abc}{(a+b)(b+c)(c+a)}=25+\frac{16abc}{(a+b)(b+c)(c+a)}> 25$
( Do áp dụng bđt Schur mở rộng là :$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{(a+b)(b+c)(c+a)}\geq 2$