Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
b: Xét ΔEBM và ΔFDM có
\(\widehat{EBM}=\widehat{FDM}\)
MB=MD
\(\widehat{EMB}=\widehat{FMD}\)
Do đó: ΔEBM=ΔFDM
Suy ra: ME=MF
c: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
Suy ra: Hai đường chéo AC và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AC
nên M là trung điểm của IK
hay I,M,K thẳng hàng
Câu 1:
Vì BD \(\perp\) d nên \(\widehat{BDA}\) = 90o
Ta có:
\(\widehat{BAD}\) + \(\widehat{BAC}\) + \(\widehat{CAE}\) = 180o
=> \(\widehat{BAD}\) + 90o + \(\widehat{CAE}\) = 180o
=> \(\widehat{BAD}\) + \(\widehat{CAE}\) = 90o (1)
Áp dụng tính chất tam giác vuông ta có:
\(\widehat{DBA}\) + \(\widehat{BAD}\) = 90o (2)
Từ (1) và (2) suy ra:
\(\widehat{BAD}\) + \(\widehat{CAE}\) = \(\widehat{DBA}\) + \(\widehat{BAD}\)
=> \(\widehat{CAE}\) = \(\widehat{DBA}\)
Xét \(\Delta\)DBA vuông tại D và \(\Delta\)EAC vuông tại E có:
BA = AC (giả thiết)
\(\widehat{DBA}\) = \(\widehat{EAC}\) (chứng minh trên)
=> \(\Delta\)DBA = \(\Delta\)EAC (cạnh huyền - góc nhọn)
=> DB = EA và DA = EC (2 cặp cạnh tương ứng).
Câu 2: Mk sẽ làm ở đây: /hoidap/question/166568.html
a) Xét \(\Delta\)ABM và \(\Delta\)CDM có:
AM = CM (suy từ giả thiết)
\(\widehat{AMB}\) = \(\widehat{CMD}\) (đối đỉnh)
BM = DM (giả thiết)
=> \(\Delta\)ABM = \(\Delta\)CDM (c.g.c)
b) Xét \(\Delta\)AMD và \(\Delta\)CMB có:
AM = CM (suy từ gt)
\(\widehat{AMD}\) = \(\widehat{CMB}\) (đối đỉnh)
MD = MB (gt)
=> \(\Delta\)AMD = \(\Delta\)CMB (c.g.c)
=> \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)
mà 2 góc ở vị trí so le trong nên AD // BC.
c) Vì \(\Delta\)AMD = \(\Delta\)CMB (câu b)
nên \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)
hay \(\widehat{EDM}\) = \(\widehat{NBM}\)
Xét \(\Delta\)EDM và \(\Delta\)NBM có:
\(\widehat{EDM}\) = \(\widehat{NBM}\) (chứng minh trên)
DM = BM (gt)
\(\widehat{EMD}\) = \(\widehat{NMB}\) (đối đỉnh)
=> \(\Delta\)EDM = \(\Delta\)NBM (g.c.g)
=> EM = NM (2 cạnh tương ứng)
Do đó M là trung điểm của NE.
a) Xét có :
(đối đỉnh)
=> (c.g.c)
b) Xét có :
(đối đỉnh)
=> (c.g.c)
=> (2 góc tương ứng)
Mà : Các góc này ở vị trí so le trong
=>
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//DC
=>DC vuông góc CA
b: AB+BC=CB+CD>BD=2BM
c: CB>CD
=>góc CBM<góc CDM=góc ABM
a) Xét ΔAMB và ΔCMD ta có:
AM = CM (GT)
ˆAMB=ˆDMCAMB^=DMC^ (đối đỉnh)
MD = BM (GT)
=> ΔAMB = ΔCMD (c - g - c)