K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

HÌNH BẠN TỰ VẼ NHA 

a ) 

Xét tứ giác BDCO , co : 

 \(\widehat{B}=90^o\left(gt\right)\)

\(\widehat{C}=90^o\left(gt\right)\)

\(\widehat{B}+\widehat{C}=90^o+90^o=180^o\)

Vay : tứ giác BDCO nội tiếp  ( vì có tổng số đo hai góc đối diện bằng 180)

b ) Xét \(\Delta DCEva\Delta DFC,co:\)

\(\widehat{D}\) là góc chung 

\(\widehat{ECD}=\widehat{EFC}\) ( góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn 1 cung ) 

Do do : \(\Delta DCE~\Delta DFC\left(g-g\right)\)

=> \(\frac{DC}{DE}=\frac{DF}{DC}\)

=> DC= DE . DF 

22 tháng 5 2018

ta có góc DIC=AIF ( đđ )

mà góc AIF = IAB (slt)

gọi H là giao điểm của OD với đường tròn

mà góc IAB = COD ( =1/2 cung CB )( Vì ACB là góc nội tiếp chắn cung CB và COD là góc ở tâm chắn cung CH mà Cung CH= cung BH= cung CB/2)

từ đó suy ra góc CID= COD

suy ra tứ giác CIOD nội tiếp( hai góc bằng nhau cùng chắn cung CD)

suy ra góc OID=OCD=90°

suy ra OI vuông với EF

suy ra I là trung điểm của EF(đpcm)

b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)

mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)

\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp

\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)

câu c tí nữa làm :P

c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD

Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)

Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)

\(\Rightarrow ID.IH=IE.IF\)

 
26 tháng 5 2017

BAC là tam giác nhọn, DOC là vuông, bằng nhau = cách nào?

26 tháng 5 2017

bạn cố gắng là bạn làm được

31 tháng 5 2017

Câu a:

Xét tam giác BOD và tam giác COD có

BD=CD (Hai tiếp tuyến cùng xp từ 1 điểm)

OD chung

OB=OC (bán kính (O))

=> tg BOD = tg COD (c.c.c) => ^DOC = ^DOB (1)

Gọi K là giao của OD với (O) ta có 

sđ ^BOD = sđ cung BK; sđ ^COD = sđ cung CK (2)

Từ (1) và (2) => sđ cung BK = sđ cung CK mà sđ cung BK + sđ cung CK = sđ cung BKC => sđ cung BK = sđ cung CK = 1/2 sđ cung BKC (3)

Ta có sđ ^BAC = 1/2 sđ cung BKC (góc nội tiếp) (4)

Từ (2) (3) (4) => ^BAC = ^DOC (dpcm)

Câu 2:

Ta có sđ ^DBC = 1/2 sđ cung BKC (góc giữa tiếp tuyến và dây cung)

sđ ^BAC = 1/2 sđ cung BKC

=> ^BAC = ^DBC (1)

AB//DF => ^BAC = ^DIC (góc đồng vị) (2)

Từ (1) và (2) => ^DBC = ^DIC => B và I cùng nhìn DC dưới hai góc băng nhau => B; D; C; I cùng nawmg trên 1 ffwowngf tròn => tứ giác BDCI nội tiếp

Câu 3:

Ta có

sđ ^COD = sđ cung CK = 1/2 sđ cung BKC (cmt)

sđ ^BAC = 1/2 sđ cung BKC

=> ^COD = ^BAC

mà ^BAC = ^DIC (cmt)

=> ^COD = ^DIC => O và I cùng nhìn CD dưới 2 góc bằng nhau => tứ giác CDOI nội tiếp (1)

Ta có sđ ^OCD = 90 = 1/2 sđ cung OD (góc nội tiếp), mà sđ ^OID = 1/2 sđ cung OD (góc nội tiếp) => ^OID = ^OCD = 90 => IO vuông góc EF => I thuộc đường tròn đường kính OD

Câu 4:

Ta có B; O; C cố định => D cố định => đường tròn đường kính OD cố định

Mà I thuộc đường tròn đường kính OD cố định

=> Khi A chuyển động trên cung BC thì I di chuyển trên đường tròn đường kính OD

a: Xét (O) có

MB,MC là tiếp tuyến

=>MB=MC

mà OB=OC

nên OM là trung trực của BC

Xét ΔMEB và ΔMBF có

góc MBE=góc MFB

góc EMB chung

=>ΔMEB đồng dạng với ΔMBF

=>MB^2=ME*MF=MH*MO

a)Xét tứ giác MBOC có 

\(\widehat{OBM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OBM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MBOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)