Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC cân tại A . vẽ trung trực của AB cắt AB tại H , cắt BC tại N . vẽ trung trực của AC tại K , cắt BC tại M . gọi I là giao điểm của NH và MK CMR : a, MA = NAb, AI là đường trung trực của BC
a: Xét ΔHBN vuông tại H và ΔKCM vuông tại K có
HB=KC
góc B=góc C
Do đo: ΔHBN=ΔKCM
Suy ra: NB=MC
mà MA=MC
và NA=NB
nên MA=NA
b: Ta có: I nằm trên đường trung trực của AB
nên IA=IB(1)
Ta có: I nằm trên đường trung trực của AC
nên IA=IC(2)
Từ (1) và(2) suy ra IB=IC
mà AB=AC
nên AI là đường trung trực của BC
hình you tự vẽ nha:
ta có: \(\Delta ABC\) cân tại A nên ta có: \(AB=AC\)VÀ \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{HBC}=\widehat{KCM}\)
NH là trung trực của AB nên \(HA=HB=\frac{1}{2}AB\)
TƯƠNG TỰ THÌ \(HK=HC=\frac{1}{2}AC=\frac{1}{2}AB\left(AB=AC\right)\)
\(\Rightarrow HB=KC=HA=AK\left(=\frac{1}{2}AB\right)\)
xét \(\Delta HBN\)và \(\Delta KCM\)
\(HB=KC\left(cmt\right)\)
\(\widehat{HBN}=\widehat{KCM}\left(cmt\right)\)
\(\widehat{BHN}=\widehat{CKM}=90^0\)
\(\Rightarrow\Delta HBN=\Delta KCM\left(g.c.g\right)\Rightarrow HN=KM\)(2 cạnh tương ứng)
xét \(\Delta AHN\) và \(\Delta AKM\) CÓ:
\(HN=KM;AH=AK\left(CMT\right)\)
\(\widehat{AHN}=\widehat{AKB}=90^0\)
\(\Delta AHN=\Delta AKM\Rightarrow MA=NA\left(ĐPCM\right)\)(2 CẠNH TƯƠNG ỨNG)(1)
b)gọi giao điểm của AI và BC là O(\(O\in BC\))
xét \(\Delta AHI\) VÀ \(\Delta AKI\) CÓ:
\(AH=AK\left(CMT\right)\)
\(\widehat{AHI}=\widehat{AKI}=90^0\)
\(AI\) CHUNG
\(\Rightarrow\)\(\Delta AHI=\Delta AKI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{HAI}=\widehat{KAI}\Rightarrow\widehat{BAO}=\widehat{CAO}\)(2 góc tương ứng)
từ đó ta dễ dàng CM \(\Delta BAO=\Delta CAO\left(c.g.c\right)\left(AB=AC;\widehat{BAO}=\widehat{CAO};AO-chung\right)\)
\(\Rightarrow\widehat{AOB}=\widehat{AOC}\)
MÀ\(\widehat{AOB}+\widehat{AOC}=180^0\Rightarrow\widehat{AOB}=\widehat{AOC}=90^0\Rightarrow AO\perp BC\)HAY \(AI\perp BC\)
MÀ TAM GIÁC ABC cân tại A nên theo TC của tam giác cân thì AI sẽ là đường trung trực của BC