Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác AHB và AHC có:AB=AC(gt)
góc AHB=AHC=90*
AH là cạnh chung.
Suy ra:tam giác AHB=AHC(cạnh huyền -cạnh góc vuông)
Suy ra:HB=HC(hai cạnh tương ứng) và góc CAH=BAH(hai góc tương ứng)
b.Vì HB=HC theo a.Suy ra: HB=HC=1/2BC= 1/2 *8 =4 (cm)
Xét tam giác AHB vuông tại H theo pi-ta -go ta có: AH^2= AB^2 - HB^2 hay AH^2 = 5^2 - 4^2 = 25 -16 = 9.Vậy AH = 3 (cm)
Xét tam giác ADH và AEH có:
góc DAH=EAH(theo a)
góc ADH=AEH =90*
AH là cạnh chung
Suy ra tam giác ADH =AEH (cạnh huyền góc nhọn).Suy ra HD = HE ( hai cạnh tương ứng ).Vậy tam giác HDE cân tại H
Suy ra AH đồng thời là đường phân giác ,đường trung tuyến,đường cao của tam giác (tính chất về đường phân giác,đường trung tuyến,đường trung trực,đường cao trong tam giác cân).Hay AH vuông góc với DE.Mà AH vuông góc với BC .Suy ra DE//BC ( hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau)
a, Tam giác ABC có AB=AC suy ra Tam giác ABC cân tại A
Có AH là đường cao đồng thời là đường trung tuyến, là đường phân giác(Tính chất tam giác cân)
hay HB=HC và góc HAB= góc HAC
b, HB=HC=1/2BC=4 cm
Áp dụng định lí pytago vào tam giác ABH ta có
AB^2=AH^2+BH^2
5^2 =AH^2+4^2
AH=3
c,
a: Ta có:ΔABC cân tại A
mà AH là đường cao
nên AH vừa là đường trung tuyến vừa là đường phân giác
b: BC=8cm
nên BH=CH=4cm
=>AH=3cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra:HD=HE
hay ΔHDE cân tại H
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)
b) Theo câu a) ta có \(\Delta AHB=\Delta AHC.\)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).
c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
=> \(\widehat{DAH}=\widehat{EAH}.\)
=> \(\Delta HDE\) cân tại \(H\left(đpcm\right).\)
Chúc bạn học tốt!
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a)Chứng minh được tam giác ABH= tam giác ACH( ch-cgv)
Suy ra: HB=HC(yttư)(đpcm). Vậy H là trung điểm BC.Suy ra HB=HC=BC:2=8:2=4
và góc BAH=góc CAH(yttư)(đpcm)
b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)
Suy ra AH^2 + BH^2 =AB^2
Suy ra AH^2+4^2= 5^2
Suy ra AH^2= 9
Mà AH>0
Suy ra AH=3
c) Xét tam giác ADH và tam giác AEH, ta có:
Góc ADH= Góc AEH=90 ĐỘ ( HD vuông góc AB, HE vuông góc AC)
AH là cạnh chung
Góc DAH= Góc EAH(yttư do tam giác ABH= tam giác ACH)
Suy ra tam giác ADH= tam giác AEH(ch-gh)
Suy ra HD=HE(yttư)
Suy ra tam giác HDE cân tại H(đpcm)
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
a)
*Chứng minh HB=HC
Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
*Chứng minh \(\widehat{BAH}=\widehat{CAH}\)
Ta có: ΔAHB=ΔAHC(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)(đpcm)
b) Tính AH
Ta có: HB=HC(cmt)
mà HB+HC=BC=8cm(B,H,C thẳng hàng)
nên \(HB=\frac{BC}{2}=\frac{8}{2}=4cm\)
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+HB^2\)
hay \(AH^2=AB^2-HB^2=5^2-4^2=9\)
⇒\(AH=\sqrt{9}=3cm\)
Vậy: AH=3cm
c)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH là cạnh chung
\(\widehat{DAH}=\widehat{EAH}\)(\(\widehat{BAH}=\widehat{CAH}\), D∈AB, E∈AC)
Do đó: ΔADH=ΔAEH(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)
mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên DE//BC(dấu hiệu nhận biết hai đường thẳng song song)