Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$. Theo bài ra ta có:
$2\overline{abc}=\overline{bca}+\overline{cab}$
$2(100a+10b+c)=100b+10c+a+100c+10a+b$
$200a+20b+20c=101b+110c+11a$
$189a=81b+90c$
$21a=9b+10c$
$10c=21a-9b\vdots 3\Rightarrow c\vdots 3$
$\Rightarrow c$ có thể là $0,3,6,9$
-----------------------------------------
Nếu $c=0$ thì $21a=9b\Rightarrow 7a=3b$
$\Rightarrow 3b\vdots 7\Rightarrow b\vdots 7\Rightarrow b=0$ hoặc $b=7$.
$b=0$ thì $a=0$ (vô lý - loại)
$b=7$ thì $a=3$. Số cần tìm là $370$
-------------------------------------------
Nếu $c=3$ thì $21a=9b+30$
$\Rightarrow 7a=3b+10< 3.10+10=40$
$\Rightarrow a\leq 5$
Mà $7a=3b+10> 10\Rightarrow a> 1$
Thử $a=2,3,4,5$ thấy $a=4; b=6$ thỏa mãn. Số cần tìm $463$
-------------------------------------------
Nếu $c=6$ thì $21a=9b+60$
$\Rightarrow 7a=3b+20\geq 20\Rightarrow a>2$
$7a=3b+20< 3.10+20=50\Rightarrow a\leq 7$
Thử $a=3,4,5,6,7$ thì $a=5; b=5$. Số cần tìm $556$
-------------------------------------------
Nếu $c=9$ thì $21a=9b+90$
$\Rightarrow 7a=3b+30\vdots 3\Rightarrow a\vdots 3$
$\Rightarrow a=3,6,9$. Thử thì $a=6; b=4$
Số cần tìm $649$
Gọi số cần tìm là ABC ( A>0 , A,B,C<10 )
Theo đề bài , ta có : ABC=11.(A+B+C)
A.100+B.10+C.1=11.A+11.B+11.C
A.89=B+C.10
Ta thấy B+C.10\(\le\)99 => A.89 \(\le\)99
=> A=1 vì nếu A bằng 2 thì 2.89 = 178 vậy A chỉ bằng 1 . Khi A=1 ta có :
B+C.10=89
Ta thấy C chỉ bằng 8 nếu C bằng 7 thì B sẽ là số có 2 chữ số . Vậy C=8
Khi C=8 ta có :
B+8.10=89
B+80=89
B=9
=> Ta có số 198
1) Chứng minh tứ giác AEHF nội tiếp đường tròn
BE là đường cao ∆ ABC ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0
CF là đường cao ∆ ABC ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0
Tứ giác AEHF có A E H ^ + A F H ^ = 180 0 nên tứ giác AEHF nội tiếp đường tròn
2) Chứng minh CE.CA = CD.CB
∆ ADC và ∆ BEC có
A D C ^ = B E C ^ = 90 0 (AD,BE là các đường cao)
C ^ chung
Do đó ∆ ADC ~ ∆ BEC(g-g)
⇒ D C E C = A C B C ⇒ D C . B C = C E . A C
Ta có:
bca=abc
cab=abc
=>abc+bca+cab=abc+abc+abc=3abc
Có lẽ bn muốn c/m vậy à
hok tốt
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF
Tứ giác BFEC có B E C ^ = B F C ^ = 90 0
=> tứ giác BFEC nội tiếp đường tròn đường kính BC
Gọi O là tâm đường tròn ngoại tiếp tứ giác BFEC thì O cũng là tâm đường tròn ngoại tiếp tam giác BEF
∆ OBE cân tại O (do OB=OE) => O B E ^ = O E B ^
∆ AEH vuông tại E có EM là trung tuyến ứng với cạnh huyền AH (Vì M là trung điểm AH)
=> ME=AH:2= MH do đó ∆ MHE cân tại M=> M E H ^ = M H E ^ = B H D ^
Mà B H D ^ + O B E ^ = 90 0 ( ∆ HBD vuông tại D)
Nên O E B ^ + M E H ^ = 90 0 Suy ra M E O ^ = 90 0
⇒ E M ⊥ O E tại E thuộc ( O ) => EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DIJ ^ = DFC ^
Tứ giác AFDC có A F C ^ = A D C ^ = 90 0 nên tứ giác AFDC nội tiếp đường tròn => B D F ^ = B A C ^
∆ BDF và ∆ BAC có B D F ^ = B A C ^ (cmt); B ^ chung do đó ∆ BDF ~ ∆ BAC(g-g)
Chứng minh tương tự ta có ∆ DEC ~ ∆ ABC(g-g)
Do đó ∆ DBF ~ ∆ DEC ⇒ B D F ^ = E D C ^ ⇒ B D I ^ = I D F ^ = E D J ^ = J D C ^ ⇒ I D J ^ = F D C ^ (1)
Vì ∆ DBF ~ ∆ DEC (cmt); DI là phân giác, DJ là phân giác ⇒ D I D F = D J D C (2)
Từ (1) và (2) suy ra ∆ DIJ ~ ∆ DFC (c-g-c) => DIJ ^ = DFC ^