K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Xét hiệu \(VP-VT=\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)-\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\right)\)

\(=\frac{3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3}{4abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Dễ thấy: \(a;b;c>0\) nên cần chứng minh 

\(3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(8a^3+5a^2b+3a^2c-4ab^2-4ac^2-b^3+3b^2c+5bc^2+c^3\right)\left(b-c\right)^2+\frac{1}{2}\left(3a^2c-2a^3-5a^2b+4ab^2+4ac^2+7b^3+3b^2c-5bc^2-c^3\right)\left(c-a\right)^2+\frac{1}{2}\left(2a^3+5a^2b-3a^2c+4ab^2+4ac^2+b^3-3b^2c+5bc^2+9c^3\right)\left(a-b\right)^2\ge0\)

31 tháng 7 2018

Tớ ko hiểu lắm