Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=0\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=0\)
\(\Leftrightarrow2.\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=-\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
Mà \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}>0\)
\(\Rightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)< 0\)
\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}< 0\left(đpcm\right)\)
(Dấu"=" không xảy ra bạn nhé)
Ta có: \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\ge0\\b-1\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\)(Vì \(c\ge0\))
Mà \(\frac{c}{a+b}\le\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)(Vì \(c\ge0\))
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Chứng minh tương tự: \(\frac{b}{bc+1}\le\frac{2b}{a+b+c};\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{bc+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT Cô-si ta có:
$ab+\frac{a}{b}\geq 2a$
$ab+\frac{b}{a}\geq 2b$
$\frac{a}{b}+\frac{b}{a}\geq 2$
Cộng theo vế 3 BĐT trên ta thu được:
$2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)$
$\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$