K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2}\ge\sqrt{\dfrac{1}{4}\left(a+b\right)^2}=\dfrac{1}{2}\left(a+b\right)\)

Tương tự: \(\sqrt{b^2-bc+c^2}\ge\dfrac{1}{2}\left(b+c\right)\)

\(\sqrt{c^2-ca+a^2}\ge\dfrac{1}{2}\left(c+a\right)\)

\(P\ge\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)=a+b+c=2019\)

Dấu "=" xảy ra <=> a = b = c = 673

2 tháng 10 2018

Ta có: a2-ab+b2 = \(\dfrac{1}{4}\)(a+b)2+3(a-b)2\(\ge\)\(\dfrac{1}{4}\)(a+b)2

\(\Rightarrow\)\(\sqrt{a^2-ab+b^2}\ge\dfrac{1}{2}\)(a+b)

Dấu "=" xảy ra \(\Leftrightarrow\) a=b

CMTT ta có: \(\sqrt{b^2-bc+c^2}\)\(\ge\dfrac{1}{2}\)(b+c) \(\Leftrightarrow\) b=c

\(\sqrt{c^2-ca+c^2}\)\(\ge\dfrac{1}{2}\left(c+a\right)\Leftrightarrow\)c=a

\(\Rightarrow\) P\(\ge\) \(\dfrac{1}{2}2\left(a+b+c\right)\)= 2019

Vậy Pmin = 2019

Dấu "=" xảy ra\(\Leftrightarrow\)a=b=c=673

9 tháng 5 2018

hình như bạn ghi sai ồi 

30 tháng 6 2020

\(S=\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\Leftrightarrow3\left(a-b\right)^2\ge0\)

do đó: \(S\ge\frac{1}{2}a+\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}c=2019\)

30 tháng 12 2018

Có lẽ là BĐT Cô-si

cứ cho a,b,c>0 thì phải nghĩ ngay đến BĐT cô-si

30 tháng 12 2018

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+bc+ca+ab}}+\frac{c}{\sqrt{c^2+ca+ab+bc}}\)

\(=\frac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\sqrt{b}\cdot\sqrt{b}}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{\sqrt{c}\cdot\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\frac{\sqrt{a}}{\sqrt{a+b}}\cdot\frac{\sqrt{a}}{\sqrt{c+a}}+\frac{\sqrt{b}}{\sqrt{b+c}}\cdot\frac{\sqrt{b}}{\sqrt{a+b}}+\frac{\sqrt{c}}{\sqrt{c+a}}\cdot\frac{\sqrt{c}}{\sqrt{c+b}}\)

\(\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}+\frac{\frac{b}{b+c}+\frac{b}{a+b}}{2}+\frac{\frac{c}{c+a}+\frac{c}{b+c}}{2}\)

\(=\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}}{2}=\frac{3}{2}\)

Vậy Max A = 3/2 khi a = b = c = 1. (Max not Min) 

NV
13 tháng 1

Bunhiacopxki:

\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)

\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)

Tương tự:

\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)

\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

16 tháng 8 2020

ta có \(4\left(a^2+a+2b^2\right)=5\left(a^2+2ab+b^2\right)+3\left(a^2-2ab+b^2\right)\)\(=5\left(a+b\right)^2+3\left(a-b\right)^2\ge5\left(a+b\right)^2\)(vì \(\left(a-b\right)^2\ge0\))

vì a,b dương nên \(2\sqrt{2a^2+ab+2b^2}\ge\sqrt{5}\left(a+b\right)\Leftrightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\left(1\right)\)

dấu "=" xảy ra khi a=b

chứng minh tương tự để có \(\hept{\begin{cases}\sqrt{2b^2+bc+2c^2}\ge\frac{5}{4}\left(b+c\right)\Leftrightarrow b=c\left(2\right)\\\sqrt{2c^2+ca+2a^2}\ge\frac{5}{4}\left(a+c\right)\Leftrightarrow a=c\left(3\right)\end{cases}}\)

cộng các bất đẳng thức (1) (2) và (3) theo vế ta được

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\ge\frac{5}{4}\cdot2\left(a+b+c\right)=2019\sqrt{5}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Leftrightarrow a=b=c=673}\)

6 tháng 2 2020

* Ta có:

\(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

* Tương tự ta có: 

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}}{2}\left(c+a\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}\left(a+b\right)+\frac{\sqrt{5}}{2}\left(b+c\right)+\frac{\sqrt{5}}{2}\left(c+a\right)\)

\(=\sqrt{5}\left(a+b+c\right)=2019\sqrt{5}\)

(Dấu "=" xảy ra khi a = b = c = 673)

Vậy \(P_{min}=2019\sqrt{5}\Leftrightarrow a=b=c=673\)

3 tháng 2 2019

\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)

Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Coi pt trên là pt bậc 2 ẩn x

Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)

           \(=-49y^2+98y-49\)

           \(=-49\left(y-1\right)^2\)

pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow-49\left(y-1\right)^2\ge0\)

                      \(\Leftrightarrow y=1\)

Thế vào pt (2) được x = 2

           

3 tháng 2 2019

\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)

\(\Rightarrow xy+yz+zx=1\)

Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được

\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)

                        \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

                        \(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)

                       \(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)

                       \(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

13 tháng 8 2020

Đặt S = \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

\(S=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\\ =\sqrt{a^2+2ab+b^2-3ab}+\sqrt{b^2+2bc+c^2-3bc}+\sqrt{c^2+2ca+a^2-3ca}\\ =\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\)

Áp dụng BĐT cô - si ta có :

\(\Rightarrow S=\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\\ \ge\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\left(c+a\right)^2}\\ =\sqrt{\dfrac{1}{4}\left(a+b\right)^2}+\sqrt{\dfrac{1}{4}\left(b+c\right)^2}+\sqrt{\dfrac{1}{4}\left(c+a\right)^2}\\ =\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)\\ =\dfrac{1}{2}\left(a+b+b+c+c+a\right)\\ =a+b+c\\ =2019\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Rightarrow\hept{\begin{cases}a=673\\b=673\\c=673\end{cases}}}\)

Vậy Min S = 2019 <=> a=b=c = 673