K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Giải: Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)

\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)

\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Nhân vế theo vế của ba đẳng thức trên ta được:

\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

12 tháng 4 2017

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Leftrightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

4 tháng 1 2018

Từ giả thiết, ta có \(cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\Leftrightarrow a^2cd+b^2cd-abc^2-abd^2=0\)

<=>\(\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\Leftrightarrow ac\left(ad-bc\right)+bd\left(bc-ad\right)=0\)

<=>\(ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)

<=>\(\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}\left(ĐPCM\right)}}\)

^_^

4 tháng 1 2018

tớ biết trước rồi. cảm ơn!!!!!!!!!!!!

2 tháng 12 2019

a) Ta có: BH d (gt); CK d (gt)

=> BH // CK (từ vuông góc đến song song).

=> góc HBC + góc BCK = 1800 (vì 2 góc trong cùng phía)

Mà do tam giác ABC vuông

=> góc ABC + góc ACB = 900

Vậy góc HBA + góc KCA = 900

Trong tam giác vuông AKC có:

góc KAC + góc KCA = 900

=> góc HBA = góc KAC (1)

Ta có: góc H = góc K = 900 (2)

AB = AC (GT) (3)

Từ (1), (2), (3) => tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn).

=> AH = CK (2 cạnh tương ứng)

b) Ta có: tam giác ABH = tam giác ACK (cmt).

=> AK=HB (2 cạnh tương ứng)

Mà AH = CK (chứng minh trên)

=> AH + AK = HB + CK

Mà AH + AK = HK.

=> HK = BH + CK (đpcm)

Chúc bạn học tốt!

1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)

\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)