K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
14 tháng 12 2017
từ \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\)
\(\Rightarrow\)\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
vì a,b,c khác 0 và các mẫu đều khác 0 nên a = b = c
\(\Rightarrow\frac{a+b}{2c}+\frac{b+c}{3a}+\frac{c+a}{4b}=1+\frac{2}{3}+\frac{1}{2}=\frac{13}{6}\)
6 tháng 4 2022
if a<b,bcz of a^b=b^c so b>c c<d d>e e<f f>g g<a bcz of g<a and a<b so g<b (not possible)
Same with a>b ,so a=b.
Do again multiple time ,we get a=b=c=d=e=f so bcs f^g=g^a,so f^g=g^f so g=f.
So totally ,we get a=b=c=d=e=f=g.