Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Vì ƯCLN ( a ; b ) = 4
=> Ta có :
a = 4 . x ( x ; y ) = 1
b = 4 . y
Vì a + b = 48
=> a + b = 4x + 4y = 48
4 . ( x + y ) = 48
x + y = 48 : 4
x + y = 12
Ta có bảng sau :
x | 1 | 11 | 7 | 5 |
y | 11 | 1 | 5 | 7 |
=>
a | 4 | 44 | 28 | 20 |
b | 44 | 4 | 20 | 28 |
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt
\(ƯCLN\left(a;b\right)=6\Rightarrow a=6a_1,b=6b_1\) (a1 và b1 nguyên tố cùng nhau)
Ta có: \(a+b=42\Rightarrow6\left(a_1+b_1\right)=42\Rightarrow a_1+b_1=7\)
Giả sử a < b thì a1 < b1 . Mà a1, b1 nguyên tố cùng nhau.
\(\Rightarrow a_1\in\left\{1;2;3\right\}\Rightarrow a\in\left\{6;12;18\right\}\Rightarrow b\in\left\{36;30;24\right\}\)
Vậy \(\left(a,b\right)\in\left\{\left(6;36\right),\left(12;30\right),\left(18;24\right)\right\}\) và các hoán vị của chúng.
a + b = 42, ƯCLN (a, b ) = 6
=> a = 6 . m ; b = 6 . n
Với ( m,n ) = 1
Mà : a + b = 42
Nên : 6 . m + 6 . n = 42
=> 6 . ( m + n ) = 42
=> ( m, n ) = 42 : 6
=> ( m, n ) = 7
m | 1 | 2 | 3 | 4 | 5 | 6 |
n | 6 | 5 | 4 | 3 | 2 | 1 |
Mà ( m,n ) = 1
=> ( m, n ) \(\in\){ ( 1,6 ) ; ( 2, 5 ) ; ( 3, 4 ) ; ( 4, 3 ) ; ( 5, 2 ) ; ( 6, 1 ) }
m | 1 | 2 | 3 | 4 | 5 | 6 |
a = 6. m | 6 | 12 | 18 | 24 | 30 | 36 |
n | 6 | 5 | 4 | 3 | 2 | 1 |
b = 6 . n | 36 | 30 | 24 | 18 | 12 | 6 |
Vậy \(\left(x,y\right)\in\left\{\left(6,36\right),\left(12,30\right),\left(18,24\right),\left(24,18\right),\left(30,12\right),\left(36,6\right)\right\}\)