Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2+b2+c2+3=2a+2b+2c
=>a2-2a+1+b2-2b+1+c2-2c+1=0 (chuyển vế và tách 3=1+1+1)
<=>(a-1)2+(b-1)2+(c-1)2=0 (1)
vì (a-1)2>=0
(b-1)2 >=0
(c-1)2>=0
do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c (2)
từ (1) và (2)=>a-1=b-1=c-1=0
=>a=b=c=1 (dpcm)
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Dấu bằng xảy ra <=> a+b+c=0 hoặc \(a^2+b^2+c^2-ab-ac-bc=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
\(=\frac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{a^2+2ab+b^2+b^2-2bc+c^2+c^2+2ca+a^2}\)
\(=\frac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2\right)+3ab\left(a-b-c\right)}{\left(a-b-c\right)^2+a^2+b^2+c^2}\)
\(=\frac{\left(\cdot a-b-c\right)\left(a^2+b^2+c^2+ac+ab-bc\right)}{4+a^2+b^2+c^2}\)
\(=\frac{2a^2+2b^2+2c^2+2ab-2bc+2ca}{4+a^2+b^2+c^2}\)
\(=\frac{\left(a-b-c\right)^2+a^2+b^2+c^2}{4+a^2+b^2+c^2}=1\)
k mk nha
\(a^3+b^3=9\)
\(\left(a+b\right)\left(a^2-ab+b^2\right)=9\)
\(a^2-ab+b^2=3\)
\(\left(a+b\right)^2-3ab=3\)
\(ab=2\)
\(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\hept{\begin{cases}a=3-b\\ab=2\end{cases}\Rightarrow}\left(3-b\right)b=2\)
\(3b-b^2-2=0\)
\(\left(2-b\right)\left(b-1\right)=0\)
\(\orbr{\begin{cases}2-b=0\\b-1=0\end{cases}}\orbr{\begin{cases}b=2\\b=1\end{cases}}\)
\(TH1:b=1\)
\(a=3-1=2\left(TM\right)\)
\(TH2:b=2\)
\(a=3-2=1 \left(TM\right)\)
KL:..........................