Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=a\left(a^2-1\right)+\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c+1\right)+\left(c-1\right)\)
Mà a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
Tương tự Suy ra b(b-1)(b+1) chia hết cho 6 và c(c-1)(c+1) chia hết cho 6 nên (a^3+b^3+c^3)-(a+b+c) chia hết cho 6
mình k biết làm nhưng bạn thử gõ lên google thử xem ! biết đâu sẽ có đấy :)
a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)
c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)
d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)
a2+b2+c2+3=2a+2b+2c
=>a2-2a+1+b2-2b+1+c2-2c+1=0 (chuyển vế và tách 3=1+1+1)
<=>(a-1)2+(b-1)2+(c-1)2=0 (1)
vì (a-1)2>=0
(b-1)2 >=0
(c-1)2>=0
do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c (2)
từ (1) và (2)=>a-1=b-1=c-1=0
=>a=b=c=1 (dpcm)
Lời giải:
a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$
Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$
$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$
$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$
$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$
$\Leftrightarrow 9=\frac{225}{a^2+9}$
$\Leftrightarrow 9(a^2+9)=225$
$\Rightarrow a=4$ (cm)
$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
b.
Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật
$\Rightarrow EF=AH$
Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)