K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

 \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

\(=a\left(a^2-1\right)+\left(b^2-1\right)+c\left(c^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c+1\right)+\left(c-1\right)\)

Mà a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6 

Tương tự Suy ra b(b-1)(b+1) chia hết cho 6 và c(c-1)(c+1) chia hết cho 6 nên (a^3+b^3+c^3)-(a+b+c) chia hết cho 6

16 tháng 11 2016

bai kho wa zay ban oi

16 tháng 11 2016

mình k biết làm nhưng bạn thử gõ lên google thử xem ! biết đâu sẽ có đấy :)

a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)

c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)

d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)

29 tháng 6 2019

a) x²+4xy+4y² b)x(9-x²) = 9x-x³ c)25-10x+x² d)9+6y+x²

20 tháng 9 2015

a2+b2+c2+3=2a+2b+2c

=>a2-2a+1+b2-2b+1+c2-2c+1=0  (chuyển vế và tách 3=1+1+1)

<=>(a-1)2+(b-1)2+(c-1)2=0  (1)

vì (a-1)2>=0  

(b-1)2  >=0

(c-1)2>=0

do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c  (2)

từ (1) và (2)=>a-1=b-1=c-1=0

=>a=b=c=1  (dpcm)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$

Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$

$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$

$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$

$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$

$\Leftrightarrow 9=\frac{225}{a^2+9}$

$\Leftrightarrow 9(a^2+9)=225$

$\Rightarrow a=4$ (cm)

$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

b.

Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật

$\Rightarrow EF=AH$

Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Hình vẽ: