\(\frac{8a+3b}{5a+2b}\) Tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

\(\frac{8a+3b}{5a+2b}=\frac{5a+3a+b+2b}{5a+2b}=\frac{5a+2b}{5a+2b}+\frac{3a+b}{5a+2b}=1+\frac{3a+b}{5a+2b}\)

3a+b và 5a+2b là nguyên tố cùng nhau

=> điều cần CM

7 tháng 4 2017

Gọi d=ƯCLN(8a+3b;5a+2b)

=> \(8a+3b⋮d\)

 \(5a+2b⋮d\)

=> \(5\left(8a+3b\right)⋮d\)

\(8\left(5a+2b\right)⋮d\)

=>\(40a+15b⋮d\)

\(40a+16b⋮d\)

=>\(\left(40a+16b\right)-\left(40a+15b\right)⋮d\)

=>\(b⋮d\)

Có \(8a+3b⋮d\)

\(5a+2b⋮d\)

=> \(2\left(8a+3b\right)⋮d\)

\(3\left(5a+2b\right)⋮d\)

=>\(16a+6b⋮d\)

\(15a+6b⋮d\)

=>\(\left(16a+6b\right)-\left(15a+6b\right)⋮d\)

=> \(a⋮d\)

Ta có \(a⋮d\)\(b⋮d\), mà a,b là 2 số nguyên tố cùng nhau 

=>d=1

Vì ƯCLN(8a+3b;5a+2b)=1 nên phân số đã cho tối giản

19 tháng 3 2017

GIÚP MK ĐI

Nguyễn Huy Tú

Ace Legona

6 tháng 2 2016

\(\frac{8a+3b}{5a+2b}=\frac{5a+3a+b+2b}{5a+2b}=\frac{5a+2b}{5a+2b}+\frac{3a+b}{5a+2b}=1+\frac{3a+b}{5a+2b}\)

⇒ 8a + 3b và 5a + 2b là nguyên tố cùng nhau

⇒ \(\frac{8a+3b}{5a+2b}\) là phân số tối giản

6 tháng 2 2016

Cách 2 : Gọi d là ƯC ( 8a + 3b; 5a + 2b )

⇒ 8a + 3b ⋮ d ; 5a + 2b ⋮ d

Nên [ ( 8a + 3b ) - ( 5a + 2b ) ] ⋮ d

[ 2.( 8a + 3b ) - 3.( 5a + 2b ) ] ⋮ d

[ ( 16a + 6b ) - ( 15a + 6b ) ] ⋮ d

[ 16a - 15a ] ⋮ d

⇒ ⋮ ⇒ d = + 1

Vì ƯC ( 8a + 3b; 5a + 2b ) = + 1 nên \(\frac{8a+3b}{5a+2b}\) là phân số tối giản

 

16 tháng 2 2019

Gọi d = ƯCLN(a, a+b) (d thuộc N*)

=> a chia hết cho d; a + b chia hết cho d

=> a chia hết cho d; b chia hết cho d

Mà phân số a/b tối giản => d = 1

=> ƯCLN(a, a+b) = 1

=> phân số a/a+b tối giản

16 tháng 2 2019

Gọi d = UCLN(a,a+b)

\(\Rightarrow\hept{\begin{cases}a⋮d\\a+b⋮d\Rightarrow b⋮d\end{cases}}\)

=> \(d\inƯC\left(a,b\right)\)

Do \(\frac{a}{b}\)là phân số tối  giản

=> (a,b) = 1

=> d = 1

=> \(\frac{a}{a+b}\)là phân số tối giản

- Còn phân số \(\frac{a}{a.b}\)không phải là ps tối giản vì nó vẫn  rút gọn được: \(\frac{a}{a.b}=\frac{1}{b}\)

 ( sai thì thôi nha )

6 tháng 2 2018

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

15 tháng 4 2015

\(\frac{8a+3b}{5a+2b}=\frac{5a+2b}{5a+2b}+\frac{3a+b}{5a+2b}=1+\frac{3a+b}{5a+2b}\).

Do ƯCLN(a;b)=1 nên \(\frac{3a+b}{5a+2b}\)là số nguyên.

Vậy suy ra điều phải chứng minh.