Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
a > 2 : b > 2
=) a + b > 2 + 2
mà a . b > 2 . 2
mà 2 + 2 = 2 .2
ko thỏa mãn
Lấy a + b > 3 + 3 = 6
a . b > 3 . 3 = 9
=) 6 < 9
=) a + b < a . b
Ta chứng minh: Nếu ƯCLN(a,6)=1 thì a^2 +5 chia hết cho 6
Từ ƯCLN(a,6)=1=> a không chia hết cho 2, a không chia hết cho 3
do a không chia hết cho 2=>(a-1)chia hết cho 2=>a^2+5=a^2-1+6=(a-1)(a+1)+6 chia hết cho 2 (1)
do a không chai hết cho 3 => (a-1)(a+1)+6 chai hết cho 3 (2)
Do ƯCLN(2;3)=1nên kết hợp với (1) và (2) được (a-1)(a+1)+6 chia hết cho (2.3)hay a^2+5 chai hết cho 6
Ngược lại: Từ a^2+5 chia hết cho 6 => ƯCLN(a;6)=1
Ta có a^2+5 chia hết cho 6 => (a-1)(a+1)+6 chia hết cho 6 <=>(a-1)(a+1) chia hết cho 6=>(a-1)(a+1) chia hết cho cả 2 và 3
Với (a-1)(a+1) chia hết 2 =>a lẻ ->ƯCLN(a,3)=1 (3)
Với (a-1)(a+1) chia hết cho 3 mà a-1,a,a+1 là ba số tự nhiên liên tiếp nên có một số chia hết cho 3=>a không chia hết cho 3=>ƯCLN(a,3)=1 (4)
Từ (3) và (4)+>ƯCLN (a,6)=1
Suy ra bài toán đã được chứng minh
Ta có \(n=4k+r\\ \left(0\le r\le3\right)\)
Theo đề bài ta suy ra được b là chữ số tận cùng của 2n
\(\Rightarrow2^n=2^{4k+r}=2^{4k}.2^r\)
Lại có \(2^{4k}.2^r=10a+b\)
+, Nếu \(r=0\Rightarrow b=6\Rightarrow ab⋮6\)
+, Nếu \(r\ne0\Rightarrow b=2^r\Leftrightarrow2^{4k}.2^r=10a+2^r\Leftrightarrow2^r.\left(16^k-1\right)=10a\)(1)
Mà \(16^k-1\equiv1-1\equiv0\left(mod3\right)\)
\(\Rightarrow16^k-1⋮3\) (2)
Từ (1),(2) \(\Rightarrow\hept{\begin{cases}10a⋮3\\\left(3,10\right)=1\end{cases}\Rightarrow a⋮3\Rightarrow ab⋮3\left(dpcm\right)}\)
bạn ơi ko đúng rồi
a=b=> a-b=b-a=0
mà số nào nhân với 0 cũng bằng 0 nên ko thể suy ra 2 số đó bằng nhau được
Tuyệt lắm bn ới ời
👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👏👏👏👏👏👏👏👏👏👏👏👏
Không giảm tính tổng quát.
Giả sử a < b thì a + b < b + b = 2b < ab
Do đó a + b < ab