Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết a+b+c=1 suy ra: c=1-a-b, thay vào bất đẳng thức ta được
(3a+4b+5-5a-5b)2\(\ge\)44ab+44(a+b)(1-a-b)
<=> 48a2+16(3b-4)a+45b2-54b+25\(\ge0\)
Xét \(f\left(a\right)=48a^2+16\left(3b-4\right)a+45b^2-54b+25\), khi đó ta được
\(\Delta'=64\left(3b-4\right)^2-48\left(45b^2-54b+25\right)=-176\left(3b^2-1\right)\le0\)
Do đó suy ra: f(a) \(\ge\)0 hay 48a2+16(3a-4)a+45b2-54b+25\(\ge\)0
Dấu "=" xảy ra khi và chỉ khi \(a=\frac{1}{2};b=\frac{1}{3};c=\frac{1}{6}\)
Ta có \(-\dfrac{4ab^2}{4b^2+1}\ge-\dfrac{4ab^2}{2\sqrt{4b^2}}=\dfrac{4ab^2}{4b}=ab\)
\(-\dfrac{4a^2b}{4a^2+1}\ge-\dfrac{4a^2b}{2\sqrt{4a^2}}=\dfrac{4a^2b}{4a}=ab\)
Mà \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4ab^2}{4a^2+1}\ge a-ab+b-ab=4ab-2ab=2ab\)
Mà \(a+b=4ab\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu "=" \(\Leftrightarrow a=b=\dfrac{1}{2}\)
Lời giải:
ĐK $\Rightarrow \frac{1}{a}+\frac{1}{b}=4$
Đặt $\frac{1}{x}=a; \frac{1}{y}=b$ thì bài toán trở thành:
Cho $a,b>0$ thỏa mãn $a+b=4$. CMR:
$P=\frac{x^2}{y(x^2+4)}+\frac{y^2}{x(y^2+4)}\geq \frac{1}{2}$
-----------------------
Áp dụng BĐT AM-GM:
$\frac{x^2}{y(x^2+4)}+\frac{y(x^2+4)}{64}\geq \frac{x}{4}$
$\frac{y^2}{x(y^2+4)}+\frac{x(y^2+4)}{64}\geq \frac{y}{4}$
Cộng theo vế và rút gọn:
$P\geq \frac{3(x+y)-xy}{16}=\frac{12-xy}{16}$
Mà $xy\leq \frac{(x+y)^2}{4}=4$
$\Rightarrow P\geq \frac{12-4}{16}=\frac{1}{2}$
Ta có đpcm.
\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
Có \(\sqrt{\left(3a+b\right)\left(a+3b\right)}\le\frac{3a+b+a+3b}{2}=2\left(a+b\right)\)
Mà 4ab=\(\left(2\sqrt{ab}\right)^2=\left[\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+b\right)\right]^2=\left[1-\left(a+b\right)\right]^2\)
Do đó nếu đặt a+b=t. Khi đó a+b \(\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}=\frac{1}{2}\)
hay \(t\ge\frac{1}{2}\)
Cần chứng minh: \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(3a+b\right)\left(a+3b\right)}\)
\(\Leftrightarrow3t^2-t+\left(1-t\right)^2\ge\frac{1}{2}\cdot2t\)
\(\Leftrightarrow4t^2-4t+1\ge0\)
\(\Leftrightarrow\left(2t-1\right)^2\ge0\)luôn đúng với mọi t \(\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2t-1=0\\3a+b=3b+a\\\sqrt{a}+\sqrt{b}=1\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=\frac{1}{2}\\a=b\\\sqrt{a}+\sqrt{b}=1\end{cases}\Leftrightarrow}a=b=\frac{1}{4}}\)
Lời giải:
$a^4-4a=b^4-4b$
$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$
$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$
$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$
$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)
$\Rightarrow (a+b)(a^2+b^2)=4>0$
Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$
Mặt khác:
Áp dụng BĐT AM-GM:
$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$
$\Rightarrow 8> (a+b)^3$
$\Rightarrow 2> a+b$
Vậy $0< a+b< 2$
Ta có đpcm.
\(a^2+ab+b^2-b=0\)
\(\Delta=b^2-4\left(b^2-b\right)\ge0\Leftrightarrow-3b^2+4b\ge0\Rightarrow0\le b\le\dfrac{4}{3}\)
\(b^2+\left(a-1\right)b+a^2=0\)
\(\Delta=\left(a-1\right)^2-4a^2\ge0\Rightarrow-3a^2-2a+1\ge0\Rightarrow-1\le a\le\dfrac{1}{3}\)
\(\Rightarrow A=3a^5+b^4\le3.\left(\dfrac{1}{3}\right)^5+\left(\dfrac{4}{3}\right)^4=\dfrac{257}{81}< 4\)
\(a^2+b^2=\frac{9a^2}{9}+\frac{16b^2}{16}\ge\frac{\left(3a+4b\right)^2}{9+16}=\frac{5^2}{25}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3a}{9}=\frac{4b}{16}=\frac{3a+4b}{9+16}=\frac{5}{25}=\frac{1}{5}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{5}\\b=\frac{4}{5}\end{cases}}\)