K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\)

30 tháng 3 2020

*)\(b^2+c^2=a^2\)

\(\Leftrightarrow b^2=a^2-c^2\)

\(\Leftrightarrow b=\sqrt{a^2-c^2}\)

Ta có: \(\sqrt{a^2-c^2}>c\Leftrightarrow a^2-c^2>c^2\)

\(\Leftrightarrow a^2>2c^2\)(luôn đúng)

=> c<b

*) \(a^2=b^2+c^2\Leftrightarrow\hept{\begin{cases}c=3\\b=4\\a=5\end{cases}\Leftrightarrow c=b+1}\)

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

7 tháng 9 2019

Mình dùng ''AM-GM ngược dấu'' như sau

Áp dụng bất đẳng thức AM-GM ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự với các phân thức khác rồi cộng vế theo vế ta được:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)=3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)\)

Mặt khác áp dụng bất đẳng thức AM-GM  \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{3}{2}\)

Vậy \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\)

bạn ơi đoạn cuối áp dụng BĐT AM-GN  mk chưa hiểu lắm

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D