K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

a, b thuộc R

13 tháng 5 2023

Ta có \(a+b\ge2\sqrt{ab}\) (Cô-si 2 số) và \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\) (Cô-si 2 số)

Nhân theo vế 2 BĐT trên, ta được \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\)

ĐTXR \(\Leftrightarrow a=b\)

số thực dương là số sao???????????????????????

29 tháng 3 2016

số thực dương ma ko biết.là soos thuộc tâp hơp R

22 tháng 4 2021

ta có

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\\ \Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\\ \Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

Bất đẳng thức trên đúng với mọi số thực a,b,c nên bất đẳng thức ban đầu được chứng minh

(Dấu bằng xảy ra khi và chỉ khi a=b=c=1)

 

22 tháng 4 2021

> hay \(\ge\)

20 tháng 11 2020

mọi người giải giúp em bài này với 

a3 - 3a2+ 5a – 17 = 0   ,   b3 - 3b2 + 5b + 11 = 0   .   Tính a+b

6 tháng 12 2018

8 tháng 8 2019

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

9 tháng 3 2021
Tôi nghĩ Minh nói đúng đấy,bạn đủ thông minh để làm đấy
5 tháng 5 2021

Áp dụng bđt AM - GM  cho a,b,c thực dương :

\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)

\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)

Dấu "=" ⇔ a = b =c 

5 tháng 5 2021

có cách lớp 8 ko ạ