K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Ta có : (a-b)^2 >= 0 với mọi a,b

<=> a^2-2ab+b^2 >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+2ab+b^2 >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :

a+b/ab >= 4/a+b

<=>1/a + 1/b >=4ab

Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4

Dấu "=" xảy ra <=> a=b ; a+b =1  <=> a=b=1/2

Vậy Min A = 4 <=> x = y= 1/2

19 tháng 4 2022

`a+ble1<=>(a+b)^2le1`

Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:

`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`

Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`

`<=>a=b=1/2`

Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2`