Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Ta có : (a-b)^2 >= 0 với mọi a,b
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :
a+b/ab >= 4/a+b
<=>1/a + 1/b >=4ab
Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4
Dấu "=" xảy ra <=> a=b ; a+b =1 <=> a=b=1/2
Vậy Min A = 4 <=> x = y= 1/2
`a+ble1<=>(a+b)^2le1`
Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:
`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`
Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`
`<=>a=b=1/2`
Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2`