Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
Có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\Rightarrow a=2c-b\\b+c=2a\left(1\right)\\c+a=2b\left(2\right)\end{cases}}\)
Thay a=2c-b vào (1) và (2) ta được
\(\hept{\begin{cases}b+c=2\left(2c-b\right)\\c+\left(2c-b\right)=2b\end{cases}\Rightarrow b=c\Rightarrow a=c}\)
Vậy a=b=c
Khi đó: \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Nguồn: GV
Sửa đề: cho a, b là các số nguyên thỏa mãn \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) .....
Giải: Ta có: \(\left(7a-21b\right)⋮7\) nên \(\left(7a-21b+5\right)\) không chia hết cho 7
Mà theo đề \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) suy ra \(\left(a-3b+1\right)⋮7\)
Lại có: \(\left(42a+14b+14\right)⋮7\) vì các số hạng đều chia hết cho 7
Do đó \(\left[\left(a-3b+1\right)+\left(42a+14b+14\right)\right]⋮7\) hay \(\left(43a+11b+15\right)⋮7\)
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.