K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Gọi $d$ là ước số (chung) của $a,b$

Đặt \(\left\{\begin{matrix} a=md\\ b=nd\end{matrix}\right.(m,n\in\mathbb{Z}^+)\)

Ta có:

\(\frac{a+1}{b}+\frac{b+1}{a}\in\mathbb{Z}\)

\(\Leftrightarrow \frac{a^2+b^2+a+b}{ab}\in\mathbb{Z}\)

\(\Leftrightarrow \frac{(a+b)^2+(a+b)-2ab}{ab}\in\mathbb{Z}\Leftrightarrow \frac{(a+b)^2+(a+b)}{ab}\in\mathbb{Z}\)

\(\Leftrightarrow (a+b)^2+a+b\vdots ab\)

\(\Leftrightarrow (md+nd)^2+md+nd\vdots mnd^2\)

\(\Leftrightarrow d(m+n)^2+m+n\vdots mnd\)

\(\Rightarrow d(m+n)^2+m+n\vdots d\Rightarrow m+n\vdots d\)

\(m+n\neq 0\). Do đó suy ra \(m+n\geq d\)

\(\Rightarrow d(m+n)\geq d^2\) hay \(a+b\geq d^2\Rightarrow d\leq \sqrt{a+b}\)

Ta có đpcm.

5 tháng 5 2018

Thanks bạn nhiều nha <3

NV
15 tháng 4 2022

\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)

\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)

Ta dễ dàng chứng minh được:

\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)

\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)

Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)

Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)

\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\) 

\(\Rightarrow b^2=4m\)

\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)

Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)

\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)

Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương

NV
16 tháng 4 2022

Mải làm quên mất, cứ nghĩ là bài yêu cầu tìm nghiệm nguyên của pt

Nếu chỉ cần chứng minh A nguyên dương thì ko cần 3 dòng cuối nữa, đến đoạn \(m=k^2\) là số chính phương là xong rồi

NV
13 tháng 8 2021

\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{2019}\Rightarrow2019=\dfrac{ab}{a+b}\)

\(\dfrac{1}{a}=\dfrac{1}{2019}-\dfrac{1}{b}=\dfrac{b-2019}{2019b}\Rightarrow b-2019=\dfrac{2019b}{a}\)

\(\dfrac{1}{b}=\dfrac{1}{2019}-\dfrac{1}{a}=\dfrac{a-2019}{2019a}\Rightarrow a-2019=\dfrac{2019a}{b}\)

\(\Rightarrow\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\dfrac{2019a}{b}}+\sqrt{\dfrac{2019b}{a}}=\dfrac{\sqrt{2019}\left(a+b\right)}{\sqrt{ab}}=\sqrt{\dfrac{ab}{a+b}}.\dfrac{a+b}{\sqrt{ab}}=\sqrt{a+b}\)

1 tháng 2 2020

Please help me!

2 tháng 5 2022

undefined

8 tháng 8 2021

? cho a,b,c tìm x,y,z là seo?

8 tháng 8 2021

chắc đề cho x+y+z=1

\(=>\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(=>\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(=\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

làm tương tự với \(\dfrac{y}{y+\sqrt{y+xz}},\dfrac{z}{z+\sqrt{z+xy}}\)

\(=>A\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) dấu"=" xảy ra<=>x=y=z=`/3

NV
16 tháng 4 2022

\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)

\(\Rightarrow a+b^2⋮ab-1\)

Do đó, vai trò của a và b là hoàn toàn như nhau.

TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)

\(\Rightarrow a=2\Rightarrow a=b=2\)

TH2: \(b>a\Rightarrow b\ge a+1\)

Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))

\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)

TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)

- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)

- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)

\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên

TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\) 

TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)

\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)

Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)

 

NV
3 tháng 3 2022

Theo tính chất dãy tỉ số bằng nhau, đặt:

\(\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}=\dfrac{d}{D}=\dfrac{a+b+c+d}{A+B+C+D}=k>0\)

\(\Rightarrow a=kA;b=kB;c=kC;d=kD;a+b+c+d=k\left(A+B+C+D\right)\)

Do đó:

\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)

\(=\sqrt{k}\left(A+B+C+D\right)\) (1)

\(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\) (2)

Từ (1);(2) suy ra điều phải c/m