Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)
\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)
\(=\left(a^2+b^2\right)\left(2-a\right)\)
Do \(a^2+b^2\ge0;\forall a;b\) nên:
\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)
\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)
\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)
\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)
\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)
cho a,b,c là các số thực dương.CMR:
\(\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
cho a;b;c là các số thực dương.CMR:\(a\sqrt{a^2+3bc}+b\sqrt{b^2+3ca}+c\sqrt{c^2+3ab}\ge2ab+2bc+2ca\)
biếng làm nên đưa link Cộng Đồng MathVn - Diễn đàn thảo luận: Chứng minh BĐT
bất đẳng thức chứa căn..... - Diễn Đàn MathScope
$a\sqrt{a^2+3bc}+b\sqrt{b^2+3ca}+c\sqrt{c^2+3ab}\geq 2(ab+bc+ca)$ - Các bài toán và vấn đề về Bất đẳng thức - Diễn đàn Toán học