K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

\(\left(a+b\right)\left(\frac{a}{b}+\frac{b}{a}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)=\frac{\left(a+b\right)^2}{ab}=\frac{a^2+b^2+2ab}{ab}>=\frac{4ab}{ab}=4\)

8 tháng 4 2019

\(Để\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\left(đpcm\right)\)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

8 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

20 tháng 2 2018

tự túc là hạnh phúc

9 tháng 8 2023

Ta đặt \(a^2+4b+3=k^2\) 

\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)

Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)

Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)

\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)

\(\Leftrightarrow c^2+c+1+b=l^2\)

Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.

Nếu \(c< b< 2c+1\) thì

\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.

Do vậy, \(c=b\) hay \(a=2b+1\)

Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.

 

7 tháng 5 2016

 Gợi ý: Áp dụng BĐT schwarz: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{1}{3}.\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đến đây làm tiếp không khó!

7 tháng 8 2019

Vì \(ab+bc+ac=3\)  =>   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{abc}\)

Đặt \(\frac{1}{a}=x\):  \(\frac{1}{b}=y\):  \(\frac{1}{c}=z\)=> x+y+z=3xyz

Ta có   \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{xyz}\ge13\)

AD BĐT  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) dấu = khi a=b=c ta có 

  \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{36}{x+y+z}\)=\(\frac{36}{3xyz}=\frac{12}{xyz}\)

=> \(\frac{12}{xyz}+\frac{1}{xyz}\ge13\)

=>  \(\frac{13}{xyz}\ge13\)

mà \(3xyz=x+y+z\ge3\sqrt[3]{xyz}\)dấu = khi x=y=z 

=> xyz\(\le1\)

=> đpcm 

3 tháng 4 2019

Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)

\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)

Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)

7 tháng 4 2019

Thank bạn Fire Sky very much ☺☺🙂☺☺!!

NV
14 tháng 9 2021

\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)

\(=0+0=0\) (ddpcm)

14 tháng 9 2021

\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)