K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

A=3(3+1)+3^2(3+1)+.....+3^59(3+1)                                                                                                                                                  =4(3+3^2+.....+3^59) CHIA HẾT CHO 4

                 

5 tháng 7 2016

\(P=a^5b-ab^5=ab\left(a^4-b^4\right)=ab\left(a^2-b^2\right)\left(a^2+b^2\right)=ab\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

  • Nếu a hoặc b chẵn => P chẵn; Nếu cả a;b lẻ thì a - b chẵn => P chẵn => P chia hết cho 2 với mọi a;b
  • Nếu a hoặc b chia hết cho 3 => P chia hết cho 3. Nếu cả a;b chia cho 3 cùng số dư thì a - b chia hết cho 3 => P chia hết cho 3. Nếu a;b chia 3 khác số dư, tức là dư là 1 và 2 thì tổng a+b chia hết cho 3. Do đó, P chia hết cho 3 với mọi a;b
  • Viết lại \(P=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)\). Dùng hệ quả 1 của định lý Fermat nhỏ : với mọi số nguyên tố p thì Xp-1 - 1 chia hết cho p với mọi X nguyên. Ta cũng suy ra được a4 - 1 và b4 - 1 đều chia hết cho 5 nên P chia hết cho 5.

P chia hết cho 2; 3; 5 nên P chia hết cho 2*3*5 = 30. ĐPCM

6 tháng 7 2016

\(m=a^5b-ab^5=a^5b-ab-ab^5+ab=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta cần CM a5-a chia hết cho 30

Thật vậy,\(a^5-a=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Vì (a-1)a(a+1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1

=>(a-1)a(a+1) chia hết cho 6

Lại có (6;5)=1

=>5(a-1)a(a+1) chia hết cho 30

Mặt khác (a-2)(a-1)a(a+1)(a+2) là h của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1

=>(a-2)(a-1)a(a+1)(a+2) chia hết cho 30

=>a5-a chia hết cho 30

=>b(a5-a) chia hết cho 3

CM tương tự với a(b5-b) ta sẽ có đpcm

6 tháng 7 2016

b(a5-a) chia hết cho 30 nhé bn

14 tháng 8 2016

các bạn giúp đi mình k cho!!!!!!

30 tháng 8 2016

BÀi 1: (ab-1)^2+(a+b)^2

=a^2b^2 -2ab+1+a^2+2ab+b^2

=a^2b^2 +a^2 +b^2+1

= a^2(b^2+1) +(b^2+1)

=(a^2 +1)(b^2 +1)   MÀ a,b thuộc N* , a^2+1>= 0 với mọi a,     b^2+1>= 0 với mọi b

Vậy x là hợp số

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)