Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{4a^4}{4c^4}=\frac{5b^4}{5d^4}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{4a^4}{4b^4}=\frac{5b^4}{5d^4}=\frac{4a^4+5b^4}{4b^4+5d^4}\)
\(\frac{4a^4}{4b^4}=\frac{a^4}{b^4}\)
vì \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{a}{c}\cdot\frac{b}{d}\cdot\frac{a}{c}\cdot\frac{b}{d}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}\)
\(\frac{a^4}{c^4}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}=\frac{4a^4+5b^4}{4c^4+5d^4}\left(đpcm\right)\)
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> \(\dfrac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(4k^4+5\right)}=\dfrac{b^4}{d^4}\)(1)
\(\dfrac{a^2b^2}{c^2d^2}=\dfrac{k^2b^2b^2}{k^2d^2d^2}=\dfrac{b^4}{d^4}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
b.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> \(\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (1)
\(\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(k^4+5\right)}=\dfrac{b^4}{d^4}\\\dfrac{a^2b^2}{c^2d^2}=\dfrac{bk^2b^2}{dk^2d^2}=\dfrac{k^2b^4}{k^2d^4}=\dfrac{b^4}{d^4}\end{matrix}\right.\)
Vậy.....
\(\left\{{}\begin{matrix}\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\\\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\end{matrix}\right.\)
Vậy....
1: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a+c}=\dfrac{bk}{bk+dk}=\dfrac{b}{b+d}\)
2: Ta có: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
nên \(\dfrac{a+c}{a}=\dfrac{b+d}{b}\)
3: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
=>a/c=a+b/c+d
Theo tính chất dãy tỉ số bằng nhau:
\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1}{2}\)
ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy ...