Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
b: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
=>AB=CD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
=>\(\widehat{ABC}=\widehat{CDA}\)
c: Xét ΔOBN và ΔODM có
OB=OD
\(\widehat{OBN}=\widehat{ODM}\)
BN=DM
Do đó: ΔOBN=ΔODM
=>\(\widehat{BON}=\widehat{DOM}\)
mà \(\widehat{DOM}+\widehat{BOM}=180^0\)
nên \(\widehat{BON}+\widehat{BOM}=180^0\)
=>\(\widehat{MON}=90^0\)
=>M,O,N thẳng hàng
d: Xét ΔOAE và ΔOCF có
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)
Do đó: ΔOAE=ΔOCF
=>\(\widehat{AOE}=\widehat{COF}\)
mà \(\widehat{AOE}+\widehat{EOC}=180^0\)
nên \(\widehat{COF}+\widehat{COE}=180^0\)
=>\(\widehat{FOE}=180^0\)
=>F,O,E thẳng hàng
mà OE=OF
nên O là trung điểm của EF
a
XÉT ΔAHB VÀ ΔDBH
BH- CẠNH CHUNG
^AHB=^DBH
AH=BD
=>ΔAHB = ΔDBH (CGC)
B) VÌ ΔAHB = ΔDBH
=> ^ABH=^DHB
MÀ 2 GÓC NÀY Ở T SO LE TRONG CỦA AB VÀ HD
=>AB//HD
C)
VÌ ΔAHB = ΔDBH
=>AB=DH (2CTU)
=>AC=BD(2CTU)
XÉT TAM GIÁC BAD VÀ TAM GIÁC HAD P/S : CÓ AI ĐỂ Ý 2 TỪ TA BAD VÀ HADKO ;V
AB=DH
AC=BD
AD-CẠNH CHUNG
=>TAM GIÁC BAD = TAM GIÁC HAD
=>^BAD=^HDA
=> ^BAO=^ODH
XÉT TAM GIÁC BAO VÀ TAM GIÁC HDO
^BAD=^HDA
AB=HD
^BAO=^ODH
=> TAM GIÁC BAO = TAM GIÁC HDO
=> BO=HO (2CTU)
=> O là trung điểm của BH
2: Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC
1:
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
AB=CD
\(\widehat{OBA}=\widehat{ODC}\)(hai góc so le trong, AB//CD)
Do đó: ΔOAB=ΔOCD
=>OA=OC và OB=OD
=>O là trung điểm chung của AC và BD
b: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>\(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
c: ΔOAD=ΔOCB
=>AD=BC
2:
a: Xét ΔAHO vuông tại H và ΔCKO vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔAHO=ΔCKO
=>AH=CK và OH=OK
b: Xét ΔAOK và ΔCOH có
OA=OC
\(\widehat{AOK}=\widehat{COH}\)
OK=OH
Do đó; ΔAOK=ΔCOH
=>\(\widehat{OAK}=\widehat{OCH}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AK//CH
c: OH=OK
H,O,K thẳng hàng
Do đó: O là trung điểm của HK
d: AH\(\perp\)BD
CK\(\perp\)BD
Do đó: AH//CK
=>AE//CF
Xét tứ giác AECF có
AE//CF
AF//CE
Do đó: AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nen O là trung điểm của EF
3: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
4: Xét ΔOIB và ΔOVD có
\(\widehat{IBO}=\widehat{VDO}\)
OB=OD
\(\widehat{IOB}=\widehat{VOD}\)
Do đó: ΔOIB=ΔOVD
=>BI=DV