K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

1:

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

AB=CD

\(\widehat{OBA}=\widehat{ODC}\)(hai góc so le trong, AB//CD)

Do đó: ΔOAB=ΔOCD

=>OA=OC và OB=OD

=>O là trung điểm chung của AC và BD

b: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: ΔOAD=ΔOCB

=>AD=BC

2:

a: Xét ΔAHO vuông tại H và ΔCKO vuông tại K có

OA=OC

\(\widehat{AOH}=\widehat{COK}\)

Do đó: ΔAHO=ΔCKO

=>AH=CK và OH=OK

b: Xét ΔAOK và ΔCOH có

OA=OC

\(\widehat{AOK}=\widehat{COH}\)

OK=OH

Do đó; ΔAOK=ΔCOH

=>\(\widehat{OAK}=\widehat{OCH}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//CH

c: OH=OK

H,O,K thẳng hàng

Do đó: O là trung điểm của HK

d: AH\(\perp\)BD

CK\(\perp\)BD

Do đó: AH//CK

=>AE//CF

Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nen O là trung điểm của EF

3: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

4: Xét ΔOIB và ΔOVD có

\(\widehat{IBO}=\widehat{VDO}\)

OB=OD

\(\widehat{IOB}=\widehat{VOD}\)

Do đó: ΔOIB=ΔOVD

=>BI=DV

15 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

b: Xét ΔOAB và ΔOCD có

OA=OC

\(\widehat{AOB}=\widehat{COD}\)

OB=OD

Do đó: ΔOAB=ΔOCD

=>AB=CD

Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

=>\(\widehat{ABC}=\widehat{CDA}\)

c: Xét ΔOBN và ΔODM có

OB=OD

\(\widehat{OBN}=\widehat{ODM}\)

BN=DM

Do đó: ΔOBN=ΔODM

=>\(\widehat{BON}=\widehat{DOM}\)

mà \(\widehat{DOM}+\widehat{BOM}=180^0\)

nên \(\widehat{BON}+\widehat{BOM}=180^0\)

=>\(\widehat{MON}=90^0\)

=>M,O,N thẳng hàng

d: Xét ΔOAE và ΔOCF có

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)

Do đó: ΔOAE=ΔOCF

=>\(\widehat{AOE}=\widehat{COF}\)

mà \(\widehat{AOE}+\widehat{EOC}=180^0\)

nên \(\widehat{COF}+\widehat{COE}=180^0\)

=>\(\widehat{FOE}=180^0\)

=>F,O,E thẳng hàng

mà OE=OF

nên O là trung điểm của EF

19 tháng 11 2017

13 tháng 3 2020

a

XÉT ΔAHB VÀ ΔDBH

BH- CẠNH CHUNG

^AHB=^DBH

AH=BD

=>ΔAHB = ΔDBH (CGC)

B) VÌ ΔAHB = ΔDBH

=> ^ABH=^DHB

MÀ  2 GÓC NÀY Ở T SO LE TRONG CỦA AB VÀ HD

=>AB//HD

C)

VÌ ΔAHB = ΔDBH

=>AB=DH (2CTU)

=>AC=BD(2CTU)

XÉT TAM GIÁC BAD VÀ TAM GIÁC HAD            P/S : CÓ AI ĐỂ Ý 2 TỪ TA BAD VÀ HADKO ;V

AB=DH

AC=BD

AD-CẠNH CHUNG

=>TAM GIÁC BAD = TAM GIÁC HAD

=>^BAD=^HDA

=> ^BAO=^ODH

XÉT TAM GIÁC BAO VÀ TAM GIÁC HDO

^BAD=^HDA

AB=HD

^BAO=^ODH

=> TAM GIÁC BAO = TAM GIÁC HDO

=> BO=HO (2CTU)

=> O là trung điểm của BH

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

17 tháng 12 2021

2: Xét tứ giác ABCD có

AB//CD

AB=CD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC