K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(a=bk;c=dk\)

Suy ra :

\(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(bk\right)^{2019}+12b^{2019}}{\left(dk\right)^{2019}+12d^{2019}}=\frac{b^{2019}.k^{2019}+12b^{2019}}{d^{2019}.k^{2019}+12d^{2019}}=\frac{b^{2019}\left(k^{2019}+12\right)}{d^{2019}\left(k^{2019}+12\right)}\)

\(\frac{b^{2019}}{k^{2019}}\left(1\right)\)

\(\text{⋆}\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}=\frac{\left(12bk-11b\right)^{2019}}{\left(12dk-11d\right)^{2019}}=\frac{\left[b\left(12k-11b\right)\right]^{2019}}{\left[b\left(12k-11d\right)\right]}=\frac{b^{2019}.\left(12k-11\right)^{2019}}{d^{2019}.\left(12k-11\right)^{2019}}\)

\(=\frac{b^{2019}}{d^{2019}}\)

Từ (1) và (2) suy ra : \(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}\left(đpcm\right)\)

13 tháng 10 2019

Sửa chút, chỗ mẫu 11c + 3b thành 11c +3d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{11a}{11c}=\frac{3b}{3d}=\frac{11a+3b}{11c+3d}\\\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{11b}{11d}=\frac{3a-11b}{3c-11d}\end{cases}}\)
\(\Rightarrow\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\)
Vậy \(\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\)

3 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}\) = k

=> a = ck , b = dk

Thay a = ck , b = dk vào  \(\frac{7a-11b}{4a+5b}\)ta có :

\(\frac{7a-11b}{4a+5b}=\frac{7.ck-11dk}{4ck+5dk}=\frac{k\left(7c-11d\right)}{k\left(4c+5d\right)}=\frac{7c-11d}{4c+5d}\)

Vậy \(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)

13 tháng 11 2018

đúng rồi

5 tháng 11 2019

                                                            Bài giải

* Từ \(\frac{a}{b}=\frac{c}{d}\text{ }\Rightarrow\text{ }\frac{a}{c}=\frac{b}{d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\text{ ( * ) }\)

* Từ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{\left(a-b\right)^{2019}}{\left(c-d\right)^{2019}}\left(\text{**}\right)\)

* Từ \(\left(\text{*}\right),\left(\text{**}\right)\Rightarrow\text{ ĐPCM}\)

NV
29 tháng 10 2019

- Nếu \(a=c=0\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\frac{b^{2019}}{d^{2019}}\)

\(\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}=\frac{-b^{2019}}{-d^{2019}}=\frac{b^{2019}}{d^{2019}}\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)

- Nếu \(a;c\ne0\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{2a^{2019}}{2c^{2019}}=\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a-c}{b-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)

29 tháng 10 2019

Này Nguyễn Việt Lâm, mk thấy cái trường hợp a;c\(\ne\)0 nó cứ làm sao sao ấy.Bn thử kiểm tra lại xem

17 tháng 3 2019

đội tuyển toán ah,sao bài khó zậy

17 tháng 3 2019

bn này đội tuyển toán đấy, năm lp 6 đc giải nhất huyện cơ mà