K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

\(=a^5+a^3b^2+b^3a^2+b^5-\left(a+b\right)\)

\(=a^5+b^5+\left(a^3b^2+b^3a^2\right)-\left(a+b\right)\)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left[\left(ab\right)^2-1\right]\left(a+b\right)\)

Mà \(ab=1\Rightarrow\left(ab\right)^2-1=1^2-1=0\)

\(\Rightarrow\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+0=a^5+b^5\)

Vậy ...

Bài 2: 

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)

\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)

\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)

6 tháng 9 2017

Xét VP: (a3+b3)(a2+b2) - (a+b)

= a5 + b5 + a3b2 + a2b3 - (a+b)

= a5 + b5 + a2b2(a+b) - (a+b)

= a5 + b5 + (a+b) - (a+b)

= a5 + b5 = VP (đpcm)

6 tháng 9 2017

= VT nhé.

30 tháng 7 2023

 Sửa đề là \(a+b=5\) nhé.

 Có 2 cách để giải dạng bài này. Cách 1 là từ điều kiện đề cho, giải hệ phương trình tìm được \(a,b\) rồi thay số vào tính. Nhưng trong nhiều trường hợp cách này khá dài dòng nên mình sẽ làm theo cách thứ 2 như sau:

 \(A=a^2+b^2=\left(a+b\right)^2-2ab=5^2-2.3=19\)

 \(B=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=5^3-3.3.5=80\)

30 tháng 7 2023

emmm ko bét nữa

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=29\)

\(a-b=\sqrt{\left(a-b\right)^2+4ab}=\sqrt{5^2+4\cdot\left(-2\right)}=\sqrt{17}\)

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=29\)

\(a-b=\sqrt{\left(a+b\right)^2-4ab}=\sqrt{5^2-4\cdot\left(-2\right)}=\sqrt{41}\)

30 tháng 9 2019

 \(a+b=10\) và \(ab=4\)

1. Có: \(A=a^2+b^2=\left(a+b\right)^2-2ab=10^2-2.4=92\)

2. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.4.10=880\)

3. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=92^2-2.4^2=8432\)

4. \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)=92.880-4^2.10=80800\)