Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì \(n-1\ne0\)
hay \(n\ne1\)
Vậy: Để A là phân số thì \(n\ne1\)
b) Để A là số nguyên thì \(4n+3⋮n-1\)
\(\Leftrightarrow4n-4+7⋮n-1\)
mà \(4n-4⋮n-1\)
nên \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Kết hợp ĐKXĐ, ta được: \(n\in\left\{2;0;8;-6\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{2;0;8;-6\right\}\)
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
a.\(A=\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=1-\dfrac{5}{n+1}\)
\(ĐK:n\ne0;n\ne4\)
b.Để A nguyên thì \(\dfrac{5}{n+1}\in Z\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
*n+1=1 => n=0
*n+1=-1 => n=-2
*n+1=5 => n=4
*n+1=-5 => n=-6
Vậy \(n=\left\{0;-2;4;-6\right\}\) thì A nguyên
a, Để A là phân số thì n-1\(\ne\) 0
=> n\(\ne\) 1
b, Có : \(A=\frac{4}{n-1}\)
Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}
Ta có bảng sau
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 | -3 |
vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}
d, ĐK:\(n+2\ne0\Leftrightarrow n\ne-2\)
\(e,A=2\\ \Leftrightarrow\dfrac{n+9}{n+2}=2\\ \Rightarrow n+9=2n+4\\ \Leftrightarrow n=5\\ A=4\\ \Leftrightarrow\dfrac{n+9}{n+2}=4\\ \Leftrightarrow n+9=4n+8\\ \Leftrightarrow3n=1\\ \Leftrightarrow n=\dfrac{1}{3}\)
\(f,A\in Z\\ \Rightarrow\dfrac{n+9}{n+2}\in Z\\ \Rightarrow\dfrac{n+2+7}{n+2}\in Z\\ \Rightarrow1+\dfrac{7}{n+2}\in Z\)
Để \(A\in Z\Rightarrow\dfrac{7}{n+2}\in Z\Rightarrow7⋮\left(n+2\right)\Rightarrow n+2\inƯ\left(7\right)\)
Ta có bảng:
n+2 | -7 | -1 | 1 | 7 |
n | -9 | -3 | -1 | 5 |
Vậy \(n\in\left\{-9;-3;-1;5\right\}\)
không hiểu bài , bài cho cái gì vậy?