Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 2 :
Ta co :
B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 + 2^26 + 2^27 + 2^28 +2^29 +2^30 ]
= 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]
= 2 . 63 +.... + 2^25 . 63
= 63 [2 + ..... + 2^25 ] chia het cho 21
Vay B chia het cho 21
Bai 1 :
Ta co :
A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4 + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50
=>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50
=> 1 + 1/1 - 1/50
=> 1 + 49/50
=> 99/50 < 2
Vay 1 < 2
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)
Câu 1:
\(B=\frac{1}{199}+1+\frac{2}{198}+1+\frac{3}{197}+1+...+\frac{198}{2}+1+\frac{199}{1}+1-199\)
\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(=200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)=200\cdot A\)
Vậy, \(\frac{A}{B}=\frac{1}{200}\).
Ta có : \(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
......
\(\frac{1}{50^2}<\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}>\frac{1}{4}\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}<\frac{12}{25}>\frac{1}{4}\)
Vậy \(A>\frac{1}{4}\)
Ý b làm tương tự
a) Đặt B= 1/2*3 + 1/3*4 + 1/49*50
B= 1- 1/50 => B<1
Ta có A= 1/12 + 1/22 + 1/32 +...+ 1/502
A= 1+ 1/2*2 +1/3*3 +....+ 1/50*50
Mà A<B ( 1/50*50 < 1/49*50)
Nên A<B<1<2
Vậy A<2
CMR à !?