Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
Ta có : 13a + 13b chia hết cho 13 và a + 4b chia hết cho 13 => 3a + 12b chia hết cho 13
=> ( 13a + 13b ) - ( 3a + 12b ) chia hết cho 13
=> 10a + b chia hết cho 13
=> đpcm
\(10a+b=\left(10a+40b\right)-39b=10\left(a+4b\right)-39b\)
ta có: a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13
39b=13.3b => chia hết cho 13
=> 10a+b chia hết cho 13
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do A chia hết cho 13 nên 10A chia hết cho 13 mà 39b chia hết cho 13
Do đó, B chia hết cho 13 hay 10a + b chia hết cho 13 (đpcm)
10a+b chia hết cho 13
=> 40a +4b-49a chia hết cho 13
hay a+4b chí hết cho 13
10a+b=13a+13b-(3a+12b)=13(a+b)-3(a+4b)
13(a+b) chia ết cho 13
a+4b chia hết cho 13 => 3(a+4b) chia hết cho 13
=> 10a+b chia hết cho 13
a+4b chia hết cho 13 thì 10.(4a+b)cũng chia hết cho 13
mà 10.(a+4b)=10a+40b=10a+b+39b
mà 39b chia hết cho 13 nên 10a+b cũng chia hết cho39
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
ta có \(a+4b⋮13\Leftrightarrow10a+40b⋮13\)
xét 10a+b=10a+40b-39b
mà \(10a+40b⋮13va-39b⋮13\)
\(\Rightarrow10a+b⋮13\)
ta co :
(a+4b)\(⋮\) 13\(\Rightarrow16\left(a+4b\right)⋮13\Leftrightarrow\left(16a+64b\right)⋮13\)
Xet:
10a+b+16a+64b=26a+65b=13(2a+5b)\(⋮\) 13
\(\Rightarrow\left(10a+b+16a+64b\right)⋮13\)
ma 16a+64b\(⋮\) 13\(\Rightarrow10a+b⋮13\) (DPCM)