K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

\(S=a^2+\dfrac{1}{a^2}\)

\(S=\dfrac{1}{16}a^2+\dfrac{1}{a^2}+\dfrac{15}{16}a^2\)

\(S\ge2\sqrt{\dfrac{1}{16}a^2\cdot\dfrac{1}{a^2}}+\dfrac{15}{16}\cdot2^2\)

\(S\ge2\cdot\dfrac{1}{4}+\dfrac{15}{4}\)

\(S\ge\dfrac{17}{4}\)

Vậy \(MINS=\dfrac{17}{4}\Leftrightarrow a=2\)

\(A=a+\dfrac{1}{a^2}=\dfrac{3}{4}a+\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2}>=\dfrac{3}{4}\cdot2+\dfrac{3}{4}=\dfrac{27}{4}\)

Dấu = xảy ra khi a=2

24 tháng 4 2023

anh nhầm 9 thành 27 rồi

NV
11 tháng 9 2021

\(P=\left(a^2+\dfrac{1}{16a^2}\right)+\left(b^2+\dfrac{1}{16b^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(P\ge1+\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.\left(\dfrac{4}{1}\right)^2=\dfrac{17}{2}\)

\(P_{min}=\dfrac{17}{2}\) khi \(a=b=\dfrac{1}{2}\)

NV
8 tháng 4 2022

Đề bài thiếu, để tìm min A; B cần thêm điều kiện a;b là số thực dương

 

ĐKXĐ: a<>1; a<>0; a<>-1

a: \(P=\dfrac{a\left(a+1\right)}{\left(a-1\right)^2}:\dfrac{a^2-1+a+2-a^2}{a\left(a-1\right)}\)

\(=\dfrac{a\left(a+1\right)}{\left(a-1\right)^2}\cdot\dfrac{a\left(a-1\right)}{a+1}=\dfrac{a^2}{a-1}\)

b: Khi P=-1/2 thì a^2/(a-1)=-1/2

=>2a^2=-a+1

=>2a^2+a-1=0

=>2a^2+2a-a-1=0

=>(a+1)(2a-1)=0

=>a=1/2(nhận) hoặc a=-1(loại)

c: \(P=\dfrac{a^2-1+1}{a-1}=a+1+\dfrac{1}{a-1}=a-1+\dfrac{1}{a-1}+2\)

=>\(P>=2\cdot\sqrt{\left(a-1\right)\cdot\dfrac{1}{a-1}}+2=4\)

Dấu = xảy ra khi a-1=1

=>a=2

11 tháng 3 2021

\(S\ge0\), đẳng thức xảy ra  khi a = b = 0.

Bài này chắc có vấn đề, đáng lẽ phải là tìm GTLN

 

11 tháng 3 2021

Sigma CTV, mk đánh nhầm đó

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

$a^2+b^2=a+b$

$\Rightarrow (a+b)^2-(a+b)=2ab\geq 0$

$\Rightarrow a+b\geq 1$. Do đó:

$S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{2ab+a+b}{ab+a+b+1}\geq \frac{\frac{ab}{2}+\frac{a+b+1}{2}}{ab+a+b+1}=\frac{1}{2}$
Vậy GTNN của $S$ là $\frac{1}{2}$. Dấu "=" xảy ra khi $(a,b)=(0,1)$ và hoán vị.

20 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)

\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)

c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)

=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)

Dấu '=' xảy ra khi (x-1)2=1

=>x-1=1 hoặc x-1=-1

=>x=0(loại) hoặc x=2(nhận)

Vậy: \(A_{min}=4\) khi x=2

15 tháng 2 2022

-Đề thiếu?

15 tháng 2 2022

e sửa r ạ